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Overview

L1: Machine learning and probability theory
Introduction to pattern recognition, classification, regression,
novelty detection, probability theory, Bayes rule, inference

L2: Density estimation and Parzen windows
Nearest Neighbor, Kernels density estimation, Silverman’s
rule, Watson Nadaraya estimator, crossvalidation

L3: Perceptron and Kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernels

L4: Support Vector estimation
Geometrical view, dual problem, convex optimization, kernels

L5: Support Vector estimation
Regression, Quantile regression, Novelty detection, ν-trick

L6: Structured Estimation
Sequence annotation, web page ranking, path planning,
implementation and optimization
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L1 Introduction to Machine Learning

Data
Texts, images, vectors, graphs

What to do with data
Unsupervised learning (clustering, embedding, etc.)
Classification, sequence annotation
Regression, autoregressive models, time series
Novelty detection

What is not machine learning
Artificial intelligence
Rule based inference

Statistics and probability theory
Probability of an event
Dependence, independence, conditional probability
Bayes rule, Hypothesis testing
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Outline

1 Data

2 Data Analysis
Unsupervised Learning
Supervised Learning
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Data

Vectors
Collections of features
e.g. height, weight, blood pressure, age, . . .
Can map categorical variables into vectors

Matrices
Images, Movies
Remote sensing and satellite data (multispectral)

Strings
Documents
Gene sequences

Structured Objects
XML documents
Graphs
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Optical Character Recognition
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Reuters Database
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Faces
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More Faces
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Microarray Data
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Biological Sequences

Goal
Estimate function of protein based on sequence information.

Example Data
>0_d1vcaa2 2.1.1.4.1 (1-90) N-terminal domain of vascular cell adhesion molecule-1 (VCAM-1) [human (Homo sapiens)]
FKIETTPESRYLAQIGDSVSLTCSTTGCESPFFSWRTQIDSPLNGKVTNEGTTSTLTMNPVSFGNEHSYL
CTATCESRKLEKGIQVEIYS
>0_d1zxq_2 2.1.1.4.2 (1-86) N-terminal domain of intracellular adhesion molecule-2, ICAM-2 [human (Homo sapiens)]
KVFEVHVRPKKLAVEPKGSLEVNCSTTCNQPEVGGLETSLNKILLDEQAQWKHYLVSNISHDTVLQCHFT
CSGKQESMNSNVSVYQ
>0_d1tlk__ 2.1.1.4.3 Telokin [turkey (Meleagris gallopavo)]
VAEEKPHVKPYFTKTILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGNCSLTI
SEVCGDDDAKYTCKAVNSLGEATCTAELLVETM
>0_d2ncm__ 2.1.1.4.4 N-terminal domain of neural cell adhesion molecule (NCAM) [human (Homo sapiens)]
RVLQVDIVPSQGEISVGESKFFLCQVAGDAKDKDISWFSPNGEKLSPNQQRISVVWNDDDSSTLTIYNAN
IDDAGIYKCVVTAEDGTQSEATVNVKIFQ
>0_d1tnm__ 2.1.1.4.5 Titin [Human (Homo sapiens), module M5]
RILTKPRSMTVYEGESARFSCDTDGEPVPTVTWLRKGQVLSTSARHQVTTTKYKSTFEISSVQASDEGNY
SVVVENSEGKQEAEFTLTIQK
>0_d1wiu__ 2.1.1.4.6 Twitchin [Nematode (Caenorhabditis elegans)]
LKPKILTASRKIKIKAGFTHNLEVDFIGAPDPTATWTVGDSGAALAPELLVDAKSSTTSIFFPSAKRADS
GNYKLKVKNELGEDEAIFEVIVQ
>0_d1koa_1 2.1.1.4.6 (351-447) Twitchin [Nematode (Caenorhabditis elegans)]
QPRFIVKPYGTEVGEGQSANFYCRVIASSPPVVTWHKDDRELKQSVKYMKRYNGNDYGLTINRVKGDDKG
EYTVRAKNSYGTKEEIVFLNVTRHSEP
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Graphs
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Missing Variables

Incomplete Data
Measurement devices may fail
E.g. dead pixels on camera, microarray, forms
incomplete, . . .
Measuring things may be expensive
diagnosis for patients
Data may be censored

How to fix it
Clever algorithms (not this course . . . )
Simple mean imputation
Substitute in the average from other observations
Works amazingly well (for starters) . . .
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Mini Summary

Data Types
Vectors (feature sets, microarrays, HPLC)
Matrices (photos, dynamical systems, controllers)
Strings (texts, biological sequences)
Structured documents (XML, HTML, collections)
Graphs (web, gene networks, tertiary structure)

Problems and Opportunities
Data may be incomplete (use mean imputation)
Data may come from different sources (adapt model)
Data may be biased (e.g. it is much easier to get blood
samples from university students for cheap).
Problem may be ill defined, e.g. “find information.”
(get information about what user really needs)
Environment may react to intervention
(butterfly portfolios in stock markets)

Alexander J. Smola: An Introduction to Machine Learning 14 / 43



Outline

1 Data

2 Data Analysis
Unsupervised Learning
Supervised Learning
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What to do with data

Unsupervised Learning
Find clusters of the data
Find low-dimensional representation of the data
(e.g. unroll a swiss roll, find structure)
Find interesting directions in data
Interesting coordinates and correlations
Find novel observations / database cleaning

Supervised Learning
Classification (distinguish apples from oranges)
Speech recognition
Regression (tomorrow’s stock value)
Predict time series
Annotate strings
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Clustering
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Principal Components
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Linear Subspace
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Classification

Data
Pairs of observations (xi , yi) drawn from distribution
e.g., (blood status, cancer), (credit transactions, fraud),
(sound profile of jet engine, defect)

Goal
Estimate y ∈ {±1} given x at a new location. Or find a
function f (x) that does the trick.
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Regression
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Regression

Data
Pairs of observations (xi , yi) generated from some joint
distribution Pr(x , y), e.g.,

market index, SP100
fab parfameters, yield
user profile, price

Task
Estimate y , given x , such that some loss c(x , y , f (x)) is
minimized.

Examples
Quadratic error between y and f (x), i.e.
c(x , y , f (x)) = 1

2(y − f (x))2.
Absolute value, i.e., c(x , y , f (x)) = |y − f (x))|.
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Annotating Strings
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Annotating Audio

Goal
Possible meaning of an audio sequence
Give confidence measure

Example (from Australian Prime Minister’s speech)
a stray alien
Australian
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Novelty Detection

Data
Observations xi from
some P(x), e.g.,

network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database,
distinguish typical
examples.
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What Machine Learning is not

Logic
If A meets B and B meets C, does A know C?
Rule satisfaction
Logical rules from data

Artificial Intelligence
Understanding of the world
Meet Sunny from I, Robot
Go and get me a bottle of beer
Robot need not understand what it is doing.

Biology and Neuroscience
Understand the brain by building neural networks?!?
Model brain and build good systems with that
Get inspiration from biology but no requirement to build
systems like that (e.g. jet planes don’t flap wings)
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Eliza

Rule based AI dialog system, vintage 1970
I am the psychotherapist. Please, describe your problems.

I am here to learn about giving good talks

Why do you say that?

Because I’m interested in learning that

Is it because you are interested in learning that that you came to me?

Yes, indeed.

Earlier you said you are interested in learning that?

Sure, you stupid computer, this is what I want!

Maybe your plans have something to do with this.

Dammit, sure, that’s what i’m trying to say.

I don’t understand.

Because you’re stupid.

Does it bother you that I am stupid?

Indeed, it does.

You mentioned that you are interested in learning that?

That’s true. And now I want to relax a bit before giving a talk.

Try it out on Emacs using M-x doctor.
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How the brain doesn’t work
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Mini Summary

Structure Extraction
Clustering
Low-dimensional subspaces
Low-dimensional representation of data

Novelty Detection
Find typical observations (Joe Sixpack)
Find highly unusual ones (oddball)
Database cleaning

Supervised Learning
Regression
Classification
Preference relationships (recommender systems)
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Statistics and Probability Theory

Why do we need it?
We deal with uncertain events
Need mathematical formulation for probabilities
Need to estimate probabilities from data
(e.g. for coin tosses, we only observe number of heads
and tails, not whether the coin is really fair).

How do we use it?
Statement about probability that an object is an apple
(rather than an orange)
Probability that two things happen at the same time
Find unusual events (= low density events)
Conditional events
(e.g. what happens if A, B, and C are true)
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Probability

Basic Idea
We have events in a space of possible outcomes. Then
Pr(X ) tells us how likely is that an event x ∈ X will occur.

Basic Axioms
Pr(X ) ∈ [0, 1] for all X ⊆ X

Pr(X) = 1
Pr (∪iXi) =

∑
i

Pr(Xi) if Xi ∩ Xj = ∅ for all i 6= j

Simple Corollary

Pr(X ∪ Y ) = Pr(X ) + Pr(Y )− Pr(X ∩ Y )

Alexander J. Smola: An Introduction to Machine Learning 31 / 43



Example
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Multiple Variables

Two Sets
Assume that x and y are drawn from a probability measure
on the product space of X and Y. Consider the space of
events (x , y) ∈ X× Y.

Independence
If x and y are independent, then for all X ⊂ X and Y ⊂ Y

Pr(X , Y ) = Pr(X ) · Pr(Y ).
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Independent Random Variables
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Dependent Random Variables
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Bayes Rule

Dependence and Conditional Probability
Typically, knowing x will tell us something about y (think
regression or classification). We have

Pr(Y |X ) Pr(X ) = Pr(Y , X ) = Pr(X |Y ) Pr(Y ).

Hence Pr(Y , X ) ≤ min(Pr(X ), Pr(Y )).
Bayes Rule

Pr(X |Y ) =
Pr(Y |X ) Pr(X )

Pr(Y )
.

Proof using conditional probabilities

Pr(X , Y ) = Pr(X |Y ) Pr(Y ) = Pr(Y |X ) Pr(X )
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Example

Pr(X ∩ X ′) = Pr(X |X ′) Pr(X ′) = Pr(X ′|X ) Pr(X )
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AIDS Test

How likely is it to have AIDS if the test says so?
Assume that roughly 0.1% of the population is infected.

p(X = AIDS) = 0.001

The AIDS test reports positive for all infections.

p(Y = test positive|X = AIDS) = 1

The AIDS test reports positive for 1% healthy people.

p(Y = test positive|X = healthy) = 0.01

We use Bayes rule to infer Pr(AIDS|test positive) via

Pr(Y |X ) Pr(X )

Pr(Y )
=

Pr(Y |X ) Pr(X )

Pr(Y |X ) Pr(X ) + Pr(Y |X\X ) Pr(X\X )

= 1·0.001
1·0.001+0.01·0.999 = 0.091

Alexander J. Smola: An Introduction to Machine Learning 38 / 43



Eye Witness

Evidence from an Eye-Witness
A witness is 90% certain that a certain customer committed
the crime. There were 20 people in the bar . . .

Would you convict the person?
Everyone is presumed innocent until proven guilty:

p(X = guilty) = 1/20

Eyewitness has equal confusion probability

p(Y = eyewitness identifies|X = guilty) = 0.9
and p(Y = eyewitness identifies|X = not guilty) = 0.1

Bayes Rule

Pr(X |Y ) = 0.9·0.05
0.9·0.05+0.1·0.95 = 0.3213 = 32%

But most judges would convict him anyway . . .
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Improving Inference

Follow up on the AIDS test:
The doctor performs a followup via a conditionally
independent test which has the following properties:

The second test reports positive for 90% infections.
The AIDS test reports positive for 5% healthy people.

Pr(T1, T2|Health) = Pr(T1|Health) Pr(T2|Health).

A bit more algebra reveals (assuming that both tests are
independent): 0.01·0.05·0.999

0.01·0.05·0.999+1·0.9·0.001 = 0.357.
Conclusion:

Adding extra observations can improve the confidence of the
test considerably.
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Different Contexts

Hypothesis Testing:
Is solution A or B better to solve the problem (e.g. in
manufacturing)?
Is a coin tainted?
Which parameter setting should we use?

Sensor Fusion:
Evidence from sensors A and B (AIDS test 1 and 2).
We have different types of data.

More Data:
We obtain two sets of data — we get more confident
Each observation can be seen as an additional test
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Mini Summary

Probability theory
Basic tools of the trade
Use it to model uncertain events

Dependence and Independence
Independent events don’t convey any information about
each other.
Dependence is what we exploit for estimation
Leads to Bayes rule

Testing
Prior probability matters
Combining tests improves outcomes
Common sense can be misleading

Alexander J. Smola: An Introduction to Machine Learning 42 / 43



Summary

Data
Vectors, matrices, strings, graphs, . . .

What to do with data
Unsupervised learning (clustering, embedding, etc.),
Classification, sequence annotation, Regression, . . .

Random Variables
Dependence, Bayes rule, hypothesis testing
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L2 Instance Based Methods

Nearest Neighbor Rules
Density estimation

empirical frequency, bin counting
priors and Laplace rule

Parzen windows
Smoothing out the estimates
Examples

Adjusting parameters
Cross validation
Silverman’s rule

Classification and regression with Parzen windows
Watson-Nadaraya estimator
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Binary Classification

Alexander J. Smola: An Introduction to Machine Learning 4 / 63



Nearest Neighbor Rule

Goal
Given some data xi , want to classify using class label yi .

Solution
Use the label of the nearest neighbor.

Modified Solution (classification)
Use the label of the majority of the k nearest neighbors.

Modified Solution (regression)
Use the value of the average of the k nearest neighbors.

Key Benefits
Basic algorithm is very simple.
Can use arbitrary similarity measures
Will eventually converge to the best possible result.

Problems
Slow and inefficient when we have lots of data.
Not very smooth estimates.
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Python Pseudocode

Nearest Neighbor Classifier

from pylab import *
from numpy import *

... load data ...

xnorm = sum(x**2)
xtestnorm = sum(xtest**2)

dists = (-2.0*dot(x.transpose(), xtest) + xtestnorm).transpose() + xnorm

labelindex = dists.argmin(axis=1)

k -Nearest Neighbor Classifier

sortargs = dists.argsort(axis=1)
k = 7
ytest = sign(mean(y[sortargs[:,0:k]], axis=1))

Nearest Neighbor Regression
just drop sign(...)
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Nearest Neighbor
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7 Nearest Neighbors
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7 Nearest Neighbors
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Regression Problem
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Nearest Neighbor Regression
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7 Nearest Neighbors Regression
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Mini Summary

Nearest Neighbor Rule
Predict same label as nearest neighbor

k -Nearest Neighbor Rule
Average estimates over k neighbors

Details
Easy to implement
No training required
Slow if lots of training data
Not so great performance
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Estimating Probabilities from Data

Rolling a dice:
Roll the dice many times and count how many times each
side comes up. Then assign empirical probability estimates
according to the frequency of occurrence.

P̂r(i) = #occurrences of i
#trials

Maximum Likelihood Estimation:
Find parameters such that the observations are most likely
given the current set of parameters.

This does not check whether the parameters are plausible!
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Practical Example
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Properties of MLE

Hoeffding’s Bound
The probability estimates converge exponentially fast

Pr{|πi − pi | > ε} ≤ 2 exp(−2mε2)

Problem
For small ε this can still take a very long time. In
particular, for a fixed confidence level δ we have

δ = 2 exp(−2mε2) =⇒ ε =

√
− log δ + log 2

2m
The above bound holds only for single πi ,
but not uniformly over all i .

Improved Approach
If we know something about πi , we should use this extra
information: use priors.
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Priors to the Rescue

Big Problem
Only sampling many times gets the parameters right.

Rule of Thumb
We need at least 10-20 times as many observations.

Conjugate Priors
Often we know what we should expect. Using a conjugate
prior helps. We insert fake additional data which we
assume that it comes from the prior.

Conjugate Prior for Discrete Distributions
Assume we see ui additional observations of class i .

πi =
#occurrences of i + ui

#trials +
∑

j uj
.

Assuming that the dice is even, set ui = m0 for all
1 ≤ i ≤ 6. For ui = 1 this is the Laplace Rule.
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Example: Dice

20 tosses of a dice

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.25 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17

Consequences
Stronger prior brings the estimate closer to uniform
distribution.
More robust against outliers
But: Need more data to detect deviations from prior
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Correct dice
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Tainted dice
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Mini Summary

Maximum Likelihood Solution
Count number of observations per event
Set probability to empirical frequency of occurrence.

Maximum a Posteriori Solution
We have a good guess about solution
Use conjugate prior
Corresponds to inventing extra data
Set probability to take additional observations into
account

Big Guns: Hoeffding and friends
Use uniform convergence and tail bounds
Exponential convergence for fixed scale
Only sublinear convergence, when fixed confidence.

Extension
Works also for other estimates, such as means and
covariance matrices.Alexander J. Smola: An Introduction to Machine Learning 21 / 63



Density Estimation

Data
Continuous valued random variables.

Naive Solution
Apply the bin-counting strategy to the continuum. That is, we
discretize the domain into bins.

Problems
We need lots of data to fill the bins
In more than one dimension the number of bins grows
exponentially:
Assume 10 bins per dimension, so we have 10 in R1

100 bins in R2

1010 bins (10 billion bins) in R10 . . .
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Mixture Density
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Sampling from p(x)

Alexander J. Smola: An Introduction to Machine Learning 24 / 63



Bin counting
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Parzen Windows

Naive approach
Use the empirical density

pemp(x) =
1
m

m∑
i=1

δ(x , xi).

which has a delta peak for every observation.
Problem

What happens when we see slightly different data?
Idea

Smear out pemp by convolving it with a kernel k(x , x ′). Here
k(x , x ′) satisfies∫

X

k(x , x ′)dx ′ = 1 for all x ∈ X.
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Parzen Windows

Estimation Formula
Smooth out pemp by convolving it with a kernel k(x , x ′).

p(x) =
1
m

m∑
i=1

k(xi , x)

Adjusting the kernel width
Range of data should be adjustable
Use kernel function k(x , x ′) which is a proper kernel.
Scale kernel by radius r . This yields

kr (x , x ′) := r nk(rx , rx ′)

Here n is the dimensionality of x .
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Discrete Density Estimate
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Smoothing Function
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Density Estimate
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Examples of Kernels

Gaussian Kernel

k(x , x ′) =
(
2πσ2) n

2 exp
(
− 1

2σ2‖x − x ′‖2
)

Laplacian Kernel

k(x , x ′) = λn2−n exp (−λ‖x − x ′‖1)

Indicator Kernel

k(x , x ′) = 1[−0.5,0.5](x − x ′)

Important Issue
Width of the kernel is usually much more important than
type.
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Gaussian Kernel
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Laplacian Kernel
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Indicator Kernel
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Gaussian Kernel
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Laplacian Kernel
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Laplacian Kernel
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Selecting the Kernel Width

Goal
We need a method for adjusting the kernel width.

Problem
The likelihood keeps on increasing as we narrow the kernels.

Reason
The likelihood estimate we see is distorted (we are being
overly optimistic through optimizing the parameters).

Possible Solution
Check the performance of the density estimate on an unseen
part of the data. This can be done e.g. by

Leave-one-out crossvalidation
Ten-fold crossvalidation
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Expected log-likelihood

What we really want
A parameter such that in expectation the likelihood of the
data is maximized

pr (X ) =
m∏

i=1

pr (xi)

or equivalently
1
m

log pr (X ) =
1
m

m∑
i=1

log pr (xi).

However, if we optimize r for the seen data, we will
always overestimate the likelihood.

Solution: Crossvalidation
Test on unseen data
Remove a fraction of data from X , say X ′, estimate using
X\X ′ and test on X ′.
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Crossvalidation Details

Basic Idea
Compute p(X ′|θ(X\X ′)) for various subsets of X and
average over the corresponding log-likelihoods.

Practical Implementation
Generate subsets Xi ⊂ X and compute the log-likelihood
estimate

1
n

n∑
i

1
|Xi |

log p(Xi |θ(X |\Xi))

Pick the parameter which maximizes the above estimate.
Special Case: Leave-one-out Crossvalidation

pX\xi (xi) =
m

m − 1
pX (xi)−

1
m − 1

k(xi , xi)

Alexander J. Smola: An Introduction to Machine Learning 40 / 63



Cross Validation
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Best Fit (λ = 1.9)
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Mini Summary

Discrete Density
Bin counting
Problems for continuous variables
Really big problems for variables in high dimensions
(curse of dimensionality)

Parzen Windows
Smooth out discrete density estimate.
Smoothing kernel integrates to 1 (allows for similar
observations to have some weight).
Density estimate is average over kernel functions
Scale kernel to accommodate spacing of data

Tuning it
Cross validation
Expected log-likelihood
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Application: Novelty Detection

Goal
Find the least likely observations xi from a dataset X .
Alternatively, identify low-density regions, given X .

Idea
Perform density estimate pX (x) and declare all xi with
pX (xi) < p0 as novel.

Algorithm
Simply compute f (xi) =

∑
j k(xi , xj) for all i and sort

according to their magnitude.
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Applications

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else unusual
on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus
information in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked), home
alarm (furniture, temperature, windows, etc.)
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Order Statistic of Densities

Alexander J. Smola: An Introduction to Machine Learning 46 / 63



Typical Data
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Outliers
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Silverman’s Automatic Adjustment

Problem
One ’width fits all’ does not work well whenever we have
regions of high and of low density.

Idea
Adjust width such that neighbors of a point are included in the
kernel at a point. More specifically, adjust range hi to yield

hi =
r
k

∑
xj∈NN(xi ,k)

‖xj − xi‖

where NN(xi , k) is the set of k nearest neighbors of xi and r
is typically chosen to be 0.5.

Result
State of the art density estimator, regression estimator and
classifier.
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Sampling from p(x)
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Uneven Scales
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Neighborhood Scales
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Adjusted Width
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Watson-Nadaraya Estimator

Goal
Given pairs of observations (xi , yi) with yi ∈ {±1} find
estimator for conditional probability Pr(y |x).

Idea
Use definition p(x , y) = p(y |x)p(x) and estimate both p(x)
and p(x , y) using Parzen windows. Using Bayes rule this
yields

Pr(y = 1|x) =
P(y = 1, x)

P(x)
=

m−1 ∑
yi=1 k(xi , x)

m−1
∑

i k(xi , x)

Bayes optimal decision
We want to classify y = 1 for Pr(y = 1|x) > 0.5. This is
equivalent to checking the sign of

Pr(y = 1|x)− Pr(y = −1|x) ∝
∑

i

yik(xi , x)
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Python Pseudocode

# Kernel function
import elefant.kernels.vector
k = elefant.kernels.vector.CGaussKernel(1)

# Compute difference between densities
ytest = k.Expand(xtest, x, y)

# Compute density estimate (up to scalar)
density = k.Expand(xtest, x, ones(x.shape[0]))
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Parzen Windows Classifier
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Parzen Windows Density Estimate
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Parzen Windows Conditional
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Watson Nadaraya Regression

Decision Boundary
Picking y = 1 or y = −1 depends on the sign of

Pr(y = 1|x)− Pr(y = −1|x) =

∑
i yik(xi , x)∑

i k(xi , x)

Extension to Regression
Use the same equation for regression. This means that

f (x) =

∑
i yik(xi , x)∑

i k(xi , x)

where now yi ∈ R.
We get a locally weighted version of the data

Alexander J. Smola: An Introduction to Machine Learning 59 / 63



Regression Problem
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Watson Nadaraya Regression
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Mini Summary

Novelty Detection
Observations in low-density regions are special
(outliers).
Applications to database cleaning, network security, etc.

Adaptive Kernel Width (Silverman’s Trick)
Kernels wide wherever we have low density

Watson Nadaraya Estimator
Conditional density estimate
Difference between class means (in feature space)
Same expression works for regression, too
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Summary

Density estimation
empirical frequency, bin counting
priors and Laplace rule

Parzen windows
Smoothing out the estimates
Examples

Adjusting parameters
Cross validation
Silverman’s rule

Classification and regression with Parzen windows
Watson-Nadaraya estimator
Nearest neighbor classifier
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L3 Perceptron and Kernels

Hebb’s rule
positive feedback
perceptron convergence rule

Hyperplanes
Linear separability
Inseparable sets

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Kernel perceptron
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Biology and Learning

Basic Idea
Good behavior should be rewarded, bad behavior
punished (or not rewarded).
This improves the fitness of the system.
Example: hitting a tiger should be rewarded . . .
Correlated events should be combined.
Example: Pavlov’s salivating dog.

Training Mechanisms
Behavioral modification of individuals (learning):
Successful behavior is rewarded (e.g. food).
Hard-coded behavior in the genes (instinct):
The wrongly coded animal dies.
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Neurons

Soma
Cell body. Here the signals
are combined (“CPU”).

Dendrite
Combines the inputs from
several other nerve cells
(“input bus”).

Synapse
Interface between two neurons (“connector”).

Axon
This may be up to 1m long and will transport the activation
signal to nerve cells at different locations (“output cable”).
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Perceptron
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Perceptrons

Weighted combination
The output of the neuron is a linear combination of the
inputs (from the other neurons via their axons) rescaled
by the synaptic weights.
Often the output does not directly correspond to the
activation level but is a monotonic function thereof.

Decision Function
At the end the results are combined into

f (x) = σ

(
n∑

i=1

wixi + b

)
.
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Separating Half Spaces

Linear Functions
An abstract model is to assume that

f (x) = 〈w , x〉+ b

where w , x ∈ Rm and b ∈ R.
Biological Interpretation

The weights wi correspond to the synaptic weights (activating
or inhibiting), the multiplication corresponds to the
processing of inputs via the synapses, and the summation is
the combination of signals in the cell body (soma).

Applications
Spam filtering (e-mail), echo cancellation (old analog
overseas cables)

Learning
Weights are “plastic” — adapted via the training data.
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Linear Separation
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Perceptron Algorithm

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w , b) = Perceptron(X , Y )
initialize w , b = 0
repeat

Pick (xi , yi) from data
if yi(w · xi + b) ≤ 0 then

w ′ = w + yixi

b′ = b + yi

until yi(w · xi + b) > 0 for all i
end
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Interpretation

Algorithm
Nothing happens if we classify (xi , yi) correctly
If we see incorrectly classified observation we update
(w , b) by yi(xi , 1).
Positive reinforcement of observations.

Solution
Weight vector is linear combination of observations xi :

w ←− w + yixi

Classification can be written in terms of dot products:

w · x + b =
∑
j∈E

yjxj · x + b
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Theoretical Analysis

Incremental Algorithm
Already while the perceptron is learning, we can use it.

Convergence Theorem (Rosenblatt and Novikoff)
Suppose that there exists a ρ > 0, a weight vector w∗

satisfying ‖w∗‖ = 1, and a threshold b∗ such that

yi (〈w∗, xi〉+ b∗) ≥ ρ for all 1 ≤ i ≤ m.

Then the hypothesis maintained by the perceptron algorithm
converges to a linear separator after no more than

(b∗2 + 1)(R2 + 1)

ρ2

updates, where R = maxi ‖xi‖.
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Proof, Part I

Starting Point
We start from w1 = 0 and b1 = 0.

Step 1: Bound on the increase of alignment
Denote by wi the value of w at step i (analogously bi).

Alignment: 〈(wi , bi), (w∗, b∗)〉

For error in observation (xi , yi) we get

〈(wj+1, bj+1) · (w∗, b∗)〉
= 〈[(wj , bj) + yi(xi , 1)] , (w∗, b∗)〉
= 〈(wj , bj), (w∗, b∗)〉+ yi〈(xi , 1) · (w∗, b∗)〉
≥ 〈(wj , bj), (w∗, b∗)〉+ ρ

≥ jρ.

Alignment increases with number of errors.
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Proof, Part II

Step 2: Cauchy-Schwartz for the Dot Product

〈(wj+1, bj+1) · (w∗, b∗)〉 ≤ ‖(wj+1, bj+1)‖ ‖(w∗, b∗)‖

=
√

1 + (b∗)2‖(wj+1, bj+1)‖

Step 3: Upper Bound on ‖(wj , bj)‖
If we make a mistake we have

‖(wj+1, bj+1)‖2 = ‖(wj , bj) + yi(xi , 1)‖2

= ‖(wj , bj)‖2 + 2yi〈(xi , 1), (wj , bj)〉+ ‖(xi , 1)‖2

≤ ‖(wj , bj)‖2 + ‖(xi , 1)‖2

≤ j(R2 + 1).

Step 4: Combination of first three steps

jρ ≤
√

1 + (b∗)2‖(wj+1, bj+1)‖ ≤
√

j(R2 + 1)((b∗)2 + 1)

Solving for j proves the theorem.Alexander J. Smola: An Introduction to Machine Learning 14 / 40



Solutions of the Perceptron
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Interpretation

Learning Algorithm
We perform an update only if we make a mistake.

Convergence Bound
Bounds the maximum number of mistakes in total. We
will make at most (b∗2 + 1)(R1 + 1)/ρ2 mistakes in the
case where a “correct” solution w∗, b∗ exists.
This also bounds the expected error (if we know ρ, R,
and |b∗|).

Dimension Independent
Bound does not depend on the dimensionality of X.

Sample Expansion
We obtain w as a linear combination of xi .

Alexander J. Smola: An Introduction to Machine Learning 16 / 40



Realizable and Non-realizable Concepts

Realizable Concept
Here some w∗, b∗ exists such that y is generated by
y = sgn (〈w∗, x〉+ b). In general realizable means that the
exact functional dependency is included in the class of
admissible hypotheses.

Unrealizable Concept
In this case, the exact concept does not exist or it is not
included in the function class.
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The XOR Problem
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Mini Summary

Perceptron
Separating halfspaces
Perceptron algorithm
Convergence theorem
Only depends on margin, dimension independent

Pseudocode
for i in range(m):

ytest = numpy.dot(w, x[:,i]) + b
if ytest * y[i] <= 0:

w += y[i] * x[:,i]
b += y[i]
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Nonlinearity via Preprocessing

Problem
Linear functions are often too simple to provide good
estimators.

Idea
Map to a higher dimensional feature space via
Φ : x → Φ(x) and solve the problem there.
Replace every 〈x , x ′〉 by 〈Φ(x), Φ(x ′)〉 in the perceptron
algorithm.

Consequence
We have nonlinear classifiers.
Solution lies in the choice of features Φ(x).
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Nonlinearity via Preprocessing

Features
Quadratic features correspond to circles, hyperbolas and
ellipsoids as separating surfaces.
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Constructing Features

Idea
Construct features manually. E.g. for OCR we could use
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More Examples

Two Interlocking Spirals
If we transform the data (x1, x2) into a radial part
(r =

√
x2

1 + x2
2 ) and an angular part (x1 = r cos φ,

x1 = r sin φ), the problem becomes much easier to solve (we
only have to distinguish different stripes).

Japanese Character Recognition
Break down the images into strokes and recognize it from the
latter (there’s a predefined order of them).

Medical Diagnosis
Include physician’s comments, knowledge about unhealthy
combinations, features in EEG, . . .

Suitable Rescaling
If we observe, say the weight and the height of a person,
rescale to zero mean and unit variance.
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Perceptron on Features

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w , b) = Perceptron(X , Y , η)
initialize w , b = 0
repeat

Pick (xi , yi) from data
if yi(w · Φ(xi) + b) ≤ 0 then

w ′ = w + yiΦ(xi)
b′ = b + yi

until yi(w · Φ(xi) + b) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yj(Φ(xj) · Φ(x)) + b
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Problems with Constructing Features

Problems
Need to be an expert in the domain (e.g. Chinese
characters).
Features may not be robust (e.g. postman drops letter in
dirt).
Can be expensive to compute.

Solution
Use shotgun approach.
Compute many features and hope a good one is among
them.
Do this efficiently.
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Polynomial Features

Quadratic Features in R2

Φ(x) :=
(

x2
1 ,
√

2x1x2, x2
2

)
Dot Product

〈Φ(x), Φ(x ′)〉 =
〈(

x2
1 ,
√

2x1x2, x2
2

)
,
(

x ′1
2
,
√

2x ′1x ′2, x ′2
2
)〉

= 〈x , x ′〉2.
Insight

Trick works for any polynomials of order d via 〈x , x ′〉d .
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Kernels

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polynomial
features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X× X→ R is a symmetric function in its
arguments for which the following property holds

k(x , x ′) = 〈Φ(x), Φ(x ′)〉 for some feature map Φ.

If k(x , x ′) is much cheaper to compute than Φ(x) . . .
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Polynomial Kernels in Rn

Idea
We want to extend k(x , x ′) = 〈x , x ′〉2 to

k(x , x ′) = (〈x , x ′〉+ c)
d where c ≥ 0 and d ∈ N.

Prove that such a kernel corresponds to a dot product.
Proof strategy

Simple and straightforward: compute the explicit sum given
by the kernel, i.e.

k(x , x ′) = (〈x , x ′〉+ c)
d

=
m∑

i=0

(
d
i

)
(〈x , x ′〉)i cd−i

Individual terms (〈x , x ′〉)i are dot products for some Φi(x).
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Kernel Perceptron

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function f = Perceptron(X , Y , η)
initialize f = 0
repeat

Pick (xi , yi) from data
if yi f (xi) ≤ 0 then

f (·)← f (·) + yik(xi , ·) + yi

until yi f (xi) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yjk(xj , x) + b.
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Are all k(x , x ′) good Kernels?

Computability
We have to be able to compute k(x , x ′) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learning
problem at hand. Quite often this means smooth functions.

Symmetry
Obviously k(x , x ′) = k(x ′, x) due to the symmetry of the dot
product 〈Φ(x), Φ(x ′)〉 = 〈Φ(x ′), Φ(x)〉.

Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?
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Mercer’s Theorem

The Theorem
For any symmetric function k : X× X→ R which is square
integrable in X× X and which satisfies∫

X×X

k(x , x ′)f (x)f (x ′)dxdx ′ ≥ 0 for all f ∈ L2(X)

there exist φi : X→ R and numbers λi ≥ 0 where

k(x , x ′) =
∑

i

λiφi(x)φi(x ′) for all x , x ′ ∈ X.

Interpretation
Double integral is continuous version of vector-matrix-vector
multiplication. For positive semidefinite matrices∑

i

∑
j

k(xi , xj)αiαj ≥ 0
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Properties of the Kernel

Distance in Feature Space
Distance between points in feature space via

d(x , x ′)2 :=‖Φ(x)− Φ(x ′)‖2

=〈Φ(x), Φ(x)〉 − 2〈Φ(x), Φ(x ′)〉+ 〈Φ(x ′), Φ(x ′)〉
=k(x , x)− 2k(x , x ′) + k(x ′, x ′)

Kernel Matrix
To compare observations we compute dot products, so we
study the matrix K given by

Kij = 〈Φ(xi), Φ(xj)〉 = k(xi , xj)

where xi are the training patterns.
Similarity Measure

The entries Kij tell us the overlap between Φ(xi) and Φ(xj), so
k(xi , xj) is a similarity measure.
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Properties of the Kernel Matrix

K is Positive Semidefinite
Claim: α>Kα ≥ 0 for all α ∈ Rm and all kernel matrices
K ∈ Rm×m. Proof:

m∑
i,j

αiαjKij =
m∑
i,j

αiαj〈Φ(xi), Φ(xj)〉

=

〈
m∑
i

αiΦ(xi),
m∑
j

αjΦ(xj)

〉
=

∥∥∥∥∥
m∑

i=1

αiΦ(xi)

∥∥∥∥∥
2

Kernel Expansion
If w is given by a linear combination of Φ(xi) we get

〈w , Φ(x)〉 =

〈
m∑

i=1

αiΦ(xi), Φ(x)

〉
=

m∑
i=1

αik(xi , x).
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A Counterexample

A Candidate for a Kernel

k(x , x ′) =

{
1 if ‖x − x ′‖ ≤ 1
0 otherwise

This is symmetric and gives us some information about the
proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute the
resulting “kernelmatrix” K . This yields

K =

 1 1 0
1 1 1
0 1 1

 and eigenvalues (
√

2−1)−1, 1 and (1−
√

2).

as eigensystem. Hence k is not a kernel.
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Some Good Kernels

Examples of kernels k(x , x ′)

Linear 〈x , x ′〉
Laplacian RBF exp (−λ‖x − x ′‖)
Gaussian RBF exp

(
−λ‖x − x ′‖2)

Polynomial (〈x , x ′〉+ c〉)d
, c ≥ 0, d ∈ N

B-Spline B2n+1(x − x ′)
Cond. Expectation Ec[p(x |c)p(x ′|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check that it
is nonnegative.
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Linear Kernel
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Laplacian Kernel
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Gaussian Kernel
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Polynomial (Order 3)
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B3-Spline Kernel
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Mini Summary

Features
Prior knowledge, expert knowledge
Shotgun approach (polynomial features)
Kernel trick k(x , x ′) = 〈φ(x), φ(x ′)〉
Mercer’s theorem

Applications
Kernel Perceptron
Nonlinear algorithm automatically by query-replace

Examples of Kernels
Gaussian RBF
Polynomial kernels
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Summary

Hebb’s rule
positive feedback
perceptron convergence rule, kernel perceptron

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Mercer’s theorem
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L4 Support Vector Classification

Support Vector Machine
Problem definition
Geometrical picture
Optimization problem

Optimization Problem
Hard margin
Convexity
Dual problem
Soft margin problem
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Classification

Data
Pairs of observations (xi , yi) generated from some
distribution P(x , y), e.g., (blood status, cancer), (credit
transaction, fraud), (profile of jet engine, defect)

Task
Estimate y given x at a new location.
Modification: find a function f (x) that does the task.
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So Many Solutions
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One to rule them all . . .
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Optimal Separating Hyperplane
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Optimization Problem

Margin to Norm
Separation of sets is given by 2

‖w‖ so maximize that.
Equivalently minimize 1

2‖w‖.
Equivalently minimize 1

2‖w‖
2.

Constraints
Separation with margin, i.e.

〈w , xi〉+ b ≥ 1 if yi = 1
〈w , xi〉+ b ≤ −1 if yi = −1

Equivalent constraint

yi(〈w , xi〉+ b) ≥ 1

Alexander J. Smola: An Introduction to Machine Learning 8 / 77



Optimization Problem

Mathematical Programming Setting
Combining the above requirements we obtain

minimize
1
2
‖w‖2

subject to yi(〈w , xi〉+ b)− 1 ≥ 0 for all 1 ≤ i ≤ m

Properties
Problem is convex
Hence it has unique minimum
Efficient algorithms for solving it exist
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Lagrange Function

Objective Function
1
2
‖w‖2.

Constraints ci(w , b) := 1− yi(〈w , xi〉+ b) ≤ 0
Lagrange Function

L(w , b, α) = PrimalObjective +
∑

i

αici

=
1
2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w , xi〉+ b))

Saddle Point Condition
Derivatives of L with respect to w and b must vanish.
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Support Vector Machines

Optimization Problem

minimize
1
2

m∑
i,j=1

αiαjyiyj〈xi , xj〉−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0

Support Vector Expansion

w =
∑

i

αiyixi and hence f (x) =
m∑

i=1

αiyi 〈xi , x〉+ b

Kuhn Tucker Conditions

αi(1− yi(〈xi , x〉+ b)) = 0
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Proof (optional)

Lagrange Function

L(w , b, α) =
1
2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w , xi〉+ b))

Saddlepoint condition

∂wL(w , b, α) = w −
m∑

i=1

αiyixi = 0 ⇐⇒ w =
m∑

i=1

αiyixi

∂bL(w , b, α) = −
m∑

i=1

αiyixi = 0 ⇐⇒
m∑

i=1

αiyi = 0

To obtain the dual optimization problem we have to substitute
the values of w and b into L. Note that the dual variables αi

have the constraint αi ≥ 0.
Alexander J. Smola: An Introduction to Machine Learning 12 / 77



Proof (optional)

Dual Optimization Problem
After substituting in terms for b, w the Lagrange function
becomes

− 1
2

m∑
i,j=1

αiαjyiyj〈xi , xj〉+
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m

Practical Modification
Need to maximize dual objective function. Rewrite as

minimize
1
2

m∑
i,j=1

αiαjyiyj〈xi , xj〉 −
m∑

i=1

αi

subject to the above constraints.
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Support Vector Expansion

Solution in w =
m∑

i=1

αiyixi

w is given by a linear combination of training patterns xi .
Independent of the dimensionality of x .
w depends on the Lagrange multipliers αi .

Kuhn-Tucker-Conditions
At optimal solution Constraint · Lagrange Multiplier = 0
In our context this means

αi(1− yi(〈w , xi〉+ b)) = 0.

Equivalently we have

αi 6= 0 =⇒ yi (〈w , xi〉+ b) = 1

Only points at the decision boundary can contribute
to the solution.
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Mini Summary

Linear Classification
Many solutions
Optimal separating hyperplane
Optimization problem

Support Vector Machines
Quadratic problem
Lagrange function
Dual problem

Interpretation
Dual variables and SVs
SV expansion
Hard margin and infinite weights
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Kernels

Nonlinearity via Feature Maps
Replace xi by Φ(xi) in the optimization problem.

Equivalent optimization problem

minimize
1
2

m∑
i,j=1

αiαjyiyjk(xi , xj)−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0

Decision Function

w =
m∑

i=1

αiyiΦ(xi) implies

f (x) = 〈w , Φ(x)〉+ b =
m∑

i=1

αiyik(xi , x) + b.
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Examples and Problems

Advantage
Works well when the data is
noise free.

Problem
Already a single wrong
observation can ruin
everything — we require
yi f (xi) ≥ 1 for all i .

Idea
Limit the influence of
individual observations by
making the constraints less
stringent (introduce slacks).
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Optimization Problem (Soft Margin)

Recall: Hard Margin Problem

minimize
1
2
‖w‖2

subject to yi(〈w , xi〉+ b)− 1 ≥ 0

Softening the Constraints

minimize
1
2
‖w‖2 + C

m∑
i=1

ξi

subject to yi(〈w , xi〉+ b)− 1+ξi ≥ 0 and ξi ≥ 0
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Linear SVM C = 50
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Linear SVM C = 50
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Linear SVM C = 50
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Linear SVM C = 50
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Insights

Changing C
For clean data C doesn’t matter much.
For noisy data, large C leads to narrow margin (SVM
tries to do a good job at separating, even though it isn’t
possible)

Noisy data
Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Python pseudocode

SVM Classification
import elefant.kernels.vector
# linear kernel
k = elefant.kernels.vector.CLinearKernel()
# Gaussian RBF kernel
k = elefant.kernels.vector.CGaussKernel(rbf)

import elefant.estimation.svm.svmclass as
svmclass
svm = svmclass.SVC(C, kernel=k)

alpha, b = svm.Train(x, y)
ytest = svm.Test(xtest)
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Dual Optimization Problem

Optimization Problem

minimize
1
2

m∑
i,j=1

αiαjyiyjk(xi , xj)−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and C ≥ αi ≥ 0 for all 1 ≤ i ≤ m

Interpretation
Almost same optimization problem as before
Constraint on weight of each αi (bounds influence of
pattern).
Efficient solvers exist (more about that tomorrow).
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SV Classification Machine
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Gaussian RBF with C = 0.1
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Gaussian RBF with C = 0.2
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Gaussian RBF with C = 0.4
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Gaussian RBF with C = 0.8
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Gaussian RBF with C = 1.6
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Gaussian RBF with C = 3.2
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Gaussian RBF with C = 6.4
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Gaussian RBF with C = 12.8
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Insights

Changing C
For clean data C doesn’t matter much.
For noisy data, large C leads to more complicated
margin (SVM tries to do a good job at separating, even
though it isn’t possible)
Overfitting for large C

Noisy data
Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5

Alexander J. Smola: An Introduction to Machine Learning 74 / 77



Gaussian RBF with σ = 10
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Insights

Changing σ

For clean data σ doesn’t matter much.
For noisy data, small σ leads to more complicated
margin (SVM tries to do a good job at separating, even
though it isn’t possible)
Lots of overfitting for small σ

Noisy data
Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Summary

Support Vector Machine
Problem definition
Geometrical picture
Optimization problem

Optimization Problem
Hard margin
Convexity
Dual problem
Soft margin problem
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L5 Novelty Detection and Regression

Novelty Detection
Basic idea
Optimization problem
Stochastic Approximation
Examples

Regression
Additive noise
Regularization
Examples
SVM Regression
Quantile Regression
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Resources

Books
V. Vapnik, The Nature of Statistical Learning Theory, 1995
V. Vapnik, Statistical Learning Theory, 1998
N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines, 2000
J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, 2004
B. Schölkopf and A. J. Smola, Learning with Kernels, 2002
R. Herbrich, Learning Kernel Classifiers: Theory and
Algorithms, 2002

Web Resources
Machine Learning Summer School
http://www.mlss.cc
Kernel Machines
http://www.kernel-machines.org
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Resources

Software
SVMLight (T. Joachims, Cornell)
LibSVM (C. Lin, NTU Taipei)
SVMLin (V. Simdhani, U Chicago)
SVMTorch (S. Bengio, Martigny)
PLearn (P. Vincent, Montreal)
Elefant (K. Gawande, NICTA)
WEKA (Waikato)
R (Vienna, other places)

More Course Material
http://sml.nicta.com.au/∼smola/
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Conferences

Neural Information Processing Systems (NIPS)
Best ML conference, cutting edge, proof of concept!

International Conference on Machine Learning (ICML)
Solid machine learning work, less cutting edge, more detail.

Uncertainty in Artificial Intelligence (UAI)
Mainly graphical models and probabilistic reasoning.

Computational Learning Theory (COLT)
The main theory conference. Not applied!

Knowledge Discovery and Data Mining (KDD)
Data mining meets machine learning. Applications rule.

American Association on Artificial Intelligence (AAAI)
Classical AI conference. Markov models and graphical
models.

Alexander J. Smola: An Introduction to Machine Learning 6 / 46



Journals

Journal of Machine Learning Research (JMLR)
Prime ML Journal

Machine Learning Journal (MLJ)
Editorial from MLJ started JMLR . . .

IEEE Pattern Analysis and Machine Intelligence (PAMI)
Classical Pattern Recognition

IEEE Information Theory
Prime Theory Journal

Neural Computation
Neuroscience meets learning

Annals of Statistics
Prime Statistics Journal

Statistics and Computing
Algorithms
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Novelty Detection

Data
Observations (xi)
generated from some
P(x), e.g.,

network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database,
distinguish typical
examples.
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Applications

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else unusual
on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus
information in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked), home
alarm (furniture, temperature, windows, etc.)
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Novelty Detection via Densities

Key Idea
Novel data is one that we don’t see frequently.
It must lie in low density regions.

Step 1: Estimate density
Observations x1, . . . , xm

Density estimate via Parzen windows
Step 2: Thresholding the density

Sort data according to density and use it for rejection
Practical implementation: compute

p(xi) =
1
m

∑
j

k(xi , xj) for all i

and sort according to magnitude.
Pick smallest p(xi) as novel points.
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Typical Data
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Outliers
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A better way . . .
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A better way . . .

Problems
We do not care about estimating the density properly in
regions of high density (waste of capacity).
We only care about the relative density for thresholding
purposes.
We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution
Areas of low density can be approximated as the level
set of an auxiliary function. No need to estimate p(x)
directly — use proxy of p(x).
Specifically: find f (x) such that x is novel if f (x) ≤ c
where c is some constant, i.e. f (x) describes the amount
of novelty.
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Maximum Distance Hyperplane

Idea Find hyperplane, given by f (x) = 〈w , x〉+ b = 0 that has
maximum distance from origin yet is still closer to the
origin than the observations.

Hard Margin

minimize
1
2
‖w‖2

subject to 〈w , xi〉 ≥ 1

Soft Margin

minimize
1
2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w , xi〉 ≥ 1− ξi

ξi ≥ 0
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The ν-Trick

Problem
Depending on C, the number of novel points will vary.
We would like to specify the fraction ν beforehand.

Solution
Use hyperplane separating data from the origin

H := {x |〈w , x〉 = ρ}

where the threshold ρ is adaptive.
Intuition

Let the hyperplane shift by shifting ρ
Adjust it such that the ’right’ number of observations is
considered novel.
Do this automatically
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The ν-Trick

Primal Problem

minimize
1
2
‖w‖2 +

m∑
i=1

ξi −mνρ

where 〈w , xi〉 − ρ + ξi ≥ 0
ξi ≥ 0

Dual Problem

minimize
1
2

m∑
i=1

αiαj〈xi , xj〉

where αi ∈ [0, 1] and
m∑

i=1

αi = νm.

Similar to SV classification problem, use standard optimizer
for it.
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USPS Digits

Better estimates since we only optimize in low density
regions.
Specifically tuned for small number of outliers.
Only estimates of a level-set.
For ν = 1 we get the Parzen-windows estimator back.
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A Simple Online Algorithm

Objective Function

1
2
‖w‖2 +

1
m

m∑
i=1

max(0, ρ− 〈w , φ(xi)〉)− νρ

Stochastic Approximation

1
2
‖w‖2 max(0, ρ− 〈w , φ(xi)〉)− νρ

Gradient

∂w [. . .] =

{
w − φ(xi) if 〈w , φ(xi)〉 < ρ
w otherwise

∂ρ[. . .] =

{
(1− ν) if 〈w , φ(xi)〉 < ρ
−ν otherwise
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Practical Implementation

Update in coefficients

αj ←(1− η)αj for j 6= i

αi ←
{

ηi if
∑i−1

j=1 αik(xi , xj) < ρ

0 otherwise

ρ =

{
ρ + η(ν − 1) if

∑i−1
j=1 αik(xi , xj) < ρ

ρ + ην otherwise

Using learning rate η.
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Online Training Run
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Worst Training Examples
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Worst Test Examples
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Mini Summary

Novelty Detection via Density Estimation
Estimate density e.g. via Parzen windows
Threshold it at level and pick low-density regions as
novel

Novelty Detection via SVM
Find halfspace bounding data
Quadratic programming solution
Use existing tools

Online Version
Stochastic gradient descent
Simple update rule: keep data if novel, but only with
fraction ν and adjust threshold.
Easy to implement
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A simple problem
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Inference

p(weight|height) =
p(height, weight)

p(height)
∝ p(height, weight)
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Bayesian Inference HOWTO

Joint Probability
We have distribution over y and y ′, given training and test
data x , x ′.

Bayes Rule
This gives us the conditional probability via

p(y , y ′|x , x ′) = p(y ′|y , x , x ′)p(y |x) and hence
p(y ′|y)∝ p(y , y ′|x , x ′) for fixed y .
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Normal Distribution in Rn

Normal Distribution in R

p(x) =
1√

2πσ2
exp

(
− 1

2σ2 (x − µ)2
)

Normal Distribution in Rn

p(x) =
1√

(2π)n det Σ
exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)
Parameters

µ ∈ Rn is the mean.
Σ ∈ Rn×n is the covariance matrix.
Σ has only nonnegative eigenvalues:
The variance is of a random variable is never negative.
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Gaussian Process Inference

Our Model
We assume that all yi are related, as given by some
covariance matrix K . More specifically, we assume that
Cov(yi , yj) is given by two terms:

A general correlation term, parameterized by k(xi , xj)
An additive noise term, parameterized by δijσ

2.
Practical Solution

Since y ′|y ∼ N(µ̃, K̃ ), we only need to collect all terms in
p(t , t ′) depending on t ′ by matrix inversion, hence

K̃ = Ky ′y ′ − K>
yy ′K−1

yy Kyy ′ and µ̃ = µ′ + K>
yy ′

[
K−1

yy (y − µ)
]︸ ︷︷ ︸

independent of y ′

Key Insight
We can use this for regression of y ′ given y .
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Some Covariance Functions

Observation
Any function k leading to a symmetric matrix with
nonnegative eigenvalues is a valid covariance function.

Necessary and sufficient condition (Mercer’s Theorem)
k needs to be a nonnegative integral kernel.

Examples of kernels k(x , x ′)

Linear 〈x , x ′〉
Laplacian RBF exp (−λ‖x − x ′‖)
Gaussian RBF exp

(
−λ‖x − x ′‖2)

Polynomial (〈x , x ′〉+ c〉)d
, c ≥ 0, d ∈ N

B-Spline B2n+1(x − x ′)
Cond. Expectation Ec[p(x |c)p(x ′|c)]
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Linear Covariance
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Laplacian Covariance
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Gaussian Covariance
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Polynomial (Order 3)
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B3-Spline Covariance
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Gaussian Processes and Kernels

Covariance Function
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Describes correlation between pairs of observations

Kernel
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Similarity measure between pairs of observations

Lucky Guess
We suspect that kernels and covariance functions are
the same . . .
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Training Data
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Mean ~k>(x)(K + σ21)−1y
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Variance k(x , x) + σ2− ~k>(x)(K + σ21)−1~k(x)
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Putting everything together . . .
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Another Example
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The ugly details

Covariance Matrices
Additive noise

K = Kkernel + σ21

Predictive mean and variance

K̃ = Ky ′y ′ − K>
yy ′K−1

yy Kyy ′ and µ̃ = K>
yy ′K−1

yy y

Pointwise prediction

Kyy = K + σ21

Ky ′y ′ = k(x , x) + σ2

Kyy ′ = (k(x1, x), . . . , k(xm, x))

Plug this into the mean and covariance equations.
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Mini Summary

Gaussian Process
Like function, just random
Mean and covariance determine the process
Can use it for estimation

Regression
Jointly normal model
Additive noise to deal with error in measurements
Estimate for mean and uncertainty
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Support Vector Regression

Loss Function
Given y , find f (x) such that the loss l(y , f (x)) is minimized.

Squared loss (y − f (x))2.
Absolute loss |y − f (x)|.
ε-insensitive loss max(0, |y − f (x)| − ε).
Quantile regression loss
max(τ(y − f (x)), (1− τ)(f (x)− y)).

Expansion
f (x) = 〈φ(x), w〉+ b

Optimization Problem

minimize
w

m∑
i=1

l(yi , f (xi)) +
λ

2
‖w‖2
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Regression loss functions
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Summary

Novelty Detection
Basic idea
Optimization problem
Stochastic Approximation
Examples

LMS Regression
Additive noise
Regularization
Examples
SVM Regression
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L6 Structured Estimation

Multiclass Estimation
Margin Definition
Optimization Problem
Dual Problem

Max-Margin-Markov Networks
Feature map
Column generation and SVMStruct
Application to sequence annotation

Web Page Ranking
Ranking Measures
Linear assignment problems
Examples
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Binary Classification
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Binary Classification
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Multiclass Classification

Goal
Given xi and yi ∈ {1, . . . , N}, define a margin.

Binary Classification

for yi = 1 〈xi , w〉 ≥ 1 + 〈xi ,−w〉
for yi = −1 〈xi ,−w〉 ≥ 1 + 〈xi , w〉

Multiclass Classification

〈xi , wy〉 ≥ 1 + 〈xi , wy ′〉 for all y ′ 6= y .
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Multiclass Classification
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Multiclass Classification
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Multiclass Classification
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Structured Estimation

Key Idea
Combine x and y into one feature vector φ(x , y).

Large Margin Condition and Slack

〈Φ(x , y), w〉 ≥ ∆(y , y ′) + 〈Φ(x , y ′), w〉 − ξ for all y ′ 6= y .

∆(y , y ′) is the cost of misclassifying y for y ′.
ξ ≥ 0 is as a slack variable.

minimize
w ,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈Φ(xi , yi) − Φ(xi , y ′), w〉 ≥ ∆(yi , y ′) − ξi for all y ′ 6= yi .
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Multiclass Margin
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Dual Problem

Quadratic Program

minimize
α

1
2

∑
i,j,y ,y ′

αiyαjy ′Kiy ,jy ′ −
∑
i,y

αiy∆(yi , y)

subject to
∑

y

αiy ≤ C and αiy ≥ 0.

Here Kiy ,jy ′ = 〈φ(xi , yi) − φ(xi , y), φ(xj , yj) − φ(xj , y ′)〉.

w =
∑
i,y

αiy (φ(xi , yi) − φ(xi , y)) .

Solving It
Use SVMStruct (by Thorsten Joachims)
Column generation (subset optimization). At optimality:

αiy [〈φ(xi , yi) − φ(xi , y), w〉 − ∆(yi , y)] = 0

Pick (i , y) pairs for which this doesn’t hold.
Alexander J. Smola: An Introduction to Machine Learning 12 / 24



Implementing It

Start
Use an existing structured SVM solver, e.g. SVMStruct.

Loss Function
Define a loss function ∆(y , y ′) for your problem.

Feature Map
Define a suitable feature map φ(x , y). More examples later.

Column Generator
Implement algorithm which maximizes

〈φ(xi , y), w〉 + ∆(yi , y)
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Mini Summary

Multiclass Margin
Joint Feature Map
Relative margin using misclassification error
Binary classification a special case

Optimization Problem
Convex Problem
Can be solved using existing packages
Column generation
Joint feature map
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Named Entity Tagging

Goal
Given a document, i.e. a sequence of words, find those
words which correspond to named entities.

Interaction
Adjacent labels will influence which words get tagged.

President Bush was hiding behind the bush.

Joint Feature Map

φ(x , y) =

[
l∑

i=1

yiφ(xi),
l∑

i=1

yiyi+1

]
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Estimation and Column Generation

Loss Function
Count how many of the labels are wrong, i.e.
∆(y , y ′) = ‖y − y ′‖1.

Estimation
Find sequence y maximizing 〈φ(x , y), w〉, that is

l∑
i=1

yi 〈φ(xi), w1〉 + yiyi+1w2

For column generation additional term
∑l

i=1 |yi − y ′
i |.

Dynamic Programming
We are maximizing a function

∑l
i=1 f (yi , yi+1).
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Dynamic Programming

Background
Generalized distributive law, Viterbi, Shortest path

Key Insight
To maximize

∑l
i=1 f (yi , yi+1), once we’ve picked yj = 1 the

problems on either side become independent. In equations

maximize
y

l∑
i=1

f (yi , yi+1)

= maximize
y2,...,yl

[ l∑
i=2

f (yi , yi+1) + maximize
y1

f (y1, y2)︸ ︷︷ ︸
:=g2(y2)

]

= maximize
y3,...,yl

[ l∑
i=3

f (yi , yi+1) + maximize
y2

f (y2, y3) + g2(y2)︸ ︷︷ ︸
:=g3(y3)

]
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Implementing It

Forward Pass
Compute recursion

gi+1(yi+1) := maximize
yi

f (yi , yi+1) + gi(yi)

Store best answers

yi(yi+1) := argmax
yi

f (yi , yi+1) + gi(yi)

Backward Pass
After computing the last term yl , solve recursion yi(yi+1).

Cost
Linear time for forward and backward pass
Linear storage
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Extensions

Fancy Feature Maps
Can use more complicated interactions between words and
labels.

Fancy Labels
More sophisticated than binary labels. E.g. tag for place,
person, organization, etc.

Fancy Structures
Rather than linear structure, have a 2D structure. Annotate
images.
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Mini Summary

Named Entity Tagging
Sequence of words, find named entities
Can be written as a structured estimation problem
Feature map decomposes into separate terms

Dynamic Programming
Objective function a sum of adjacent terms
Same as Viterbi algorithm
Linear time and space
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Web Page Ranking

Goal
Given a set of documents di and a query q, find ranking of
documents such that most relevant documents come first.

Data
At training time, we have ratings of pages yi ∈ {0, 5}.

Scoring Function
Discounted cumulative gain. That is, we gain more if we rank
relevant pages highly, namely

DCG(π, y) =
∑

i,j

πij
2yi + 1

log(j + 1)
.

π is a permutation matrix (exactly one entry per row / column
is 1, rest is 0).
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From Scores to Losses

Goal
We need a loss function, not a performance score.

Idea
Use performance relative to the best as loss score.

Practical Implementation
Instead of DCG(π, y) use ∆(1, π) = DCG(1, y) − DCG(π, y).
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Feature map . . .

Goal
Find w such that 〈w , φ(di , q)〉 gives us a score (like
PageRank, but we want to learn it from data).

Joint feature map
Need to map q, {d1, . . . , dl} and π into feature space.
Want to get sort operation at test time from
〈φ(q, D, π), w〉.

Solution
φ(q, D, π) =

∑
i,j

πijciφ(q, dj) where ci is decreasing.

Consequence∑
i,j πijci 〈φ(q, dj), w〉 is maximized by sorting documents

along ci , i.e. in descending order.
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Sorting

Unsorted: score is 57
ci 1 2 3 4 5
Page ranks 3 2 3 9 1

Sorted: score is 71
ci 1 2 3 4 5
Page ranks 1 2 3 3 9

This is also known as the Polya-Littlewood-Hardy inequality
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Column Generation

Goal
Efficiently find permutation which maximizes

〈φ(q, D, π), w〉 + ∆(1, π)

Optimization Problem

maximize
π

∑
i,j

πij

[
ci 〈φ(dj , q), w〉 +

2yi + 1
log(j + 1)

]
This is a linear assignment problem. Efficient codes exist
(Hungarian marriage algorithm) to solve this in O(l3) time.

Putting everything together
Use existing SVM solver (e.g. SVMStruct)
Implement column generator for training
Design sorting kernel
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NDCG Optimization
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NDCG Optimization
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Mini Summary

Ranking Problem
Web page ranking (documents with relevance score)
Multivariate performance score
Hard to optimize directly

Feature Map
Maps permutations and data jointly into feature space
Simple sort operation at test time

Column Generation
Linear assignment problem
Integrate in structured SVM solver
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Summary

Structured Estimation
Basic idea
Optimization problem

Named Entity Tagging
Annotation of a sequence
Joint featuremap
Dynamic programming

Ranking
Multivariate performance score
Linear assignment problem
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