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Abstract: Motivation

The dream of creating artificial devices that reach or outperform human

intelligence is an old one, however a computationally efficient theory of

true intelligence has not been found yet, despite considerable efforts in

the last 50 years. Nowadays most research is more modest, focussing on

solving more narrow, specific problems, associated with only some

aspects of intelligence, like playing chess or natural language translation,

either as a goal in itself or as a bottom-up approach. The dual, top

down approach, is to find a mathematical (not computational) definition

of general intelligence. Note that the AI problem remains non-trivial

even when ignoring computational aspects.
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Abstract: Contents

In this course we will develop such an elegant mathematical

parameter-free theory of an optimal reinforcement learning agent

embedded in an arbitrary unknown environment that possesses

essentially all aspects of rational intelligence. Most of the course is

devoted to giving an introduction to the key ingredients of this theory,

which are important subjects in their own right: Occam’s razor; Turing

machines; Kolmogorov complexity; probability theory; Solomonoff

induction; Bayesian sequence prediction; minimum description length

principle; agents; sequential decision theory; adaptive control theory;

reinforcement learning; Levin search and extensions.
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Background and Context

• Organizational

• Artificial General Intelligence

• Natural and Artificial Approaches

• On Elegant Theories of

• What is (Artificial) Intelligence?

• What is Universal Artificial Intelligence?

• Relevant Research Fields

• Relation between ML & RL & (U)AI

• Course Highlights
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Organizational

• Suitable for a 1 or 2 semester course:

with tutorials, assignments, exam, lab, group project, seminar, ...

See e.g. [http://cs.anu.edu.au/courses/COMP4620/2010.html]

• Prescribed texts: Parts of: [Hut05] (theory), [Leg08] (philosophy),

[VNH+11] (implementation).

• Reference details: See end of each section.

• Main course sources: See end of all slides.

• For a shorter course: Sections 4.3, 4.4, 5, 6, 7, 10.1, 11

might be dropped or shortened.

• For an even shorter course (4-8 hours):

Use [http://www.hutter1.net/ai/suai.pdf]
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Artificial General Intelligence

What is (not) the goal of AGI research?

• Is: Build general-purpose Super-Intelligences.

• Not: Create AI software solving specific problems.

• Might ignite a technological Singularity.

What is (Artificial) Intelligence?

What are we really doing and aiming at?

• Is it to build systems by trial&error, and if they do something

we think is smarter than previous systems, call it success?

• Is it to try to mimic the behavior of biological organisms?

We need (and have!) theories which

can guide our search for intelligent algorithms.
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“Natural” Approaches
copy and improve (human) nature

Biological Approaches to Super-Intelligence

• Brain Scan & Simulation

• Genetic Enhancement

• Brain Augmentation

Not the topic of this course
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“Artificial” Approaches
Design from first principles. At best inspired by nature.

Artificial Intelligent Systems:

• Logic/language based: expert/reasoning/proving/cognitive systems.

• Economics inspired: utility, sequential decisions, game theory.

• Cybernetics: adaptive dynamic control.

• Machine Learning: reinforcement learning.

• Information processing: data compression ≈ intelligence.

Separately too limited for AGI, but jointly very powerful.

Topic of this course: Foundations of “artificial” approaches to AGI
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There is an Elegant Theory of ...

Cellular Automata ⇒ ... Computing

Iterative maps ⇒ ...Chaos and Order

QED ⇒ ... Chemistry

Super-Strings ⇒ ... the Universe

Universal AI ⇒ ... Super Intelligence
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What is (Artificial) Intelligence?
Intelligence can have many faces ⇒ formal definition difficult

• reasoning
• creativity
• association
• generalization
• pattern recognition
• problem solving
• memorization
• planning
• achieving goals
• learning
• optimization
• self-preservation
• vision
• language processing
• motor skills
• classification
• induction
• deduction
• ...

What is AI? Thinking Acting

humanly Cognitive Turing test,
Science Behaviorism

rationally Laws Doing the
Thought Right Thing

Collection of 70+ Defs of Intelligence
http://www.vetta.org/

definitions-of-intelligence/

Real world is nasty: partially unobservable,
uncertain, unknown, non-ergodic, reactive,
vast, but luckily structured, ...



Universal Artificial Intelligence - 11 - Marcus Hutter

What is Universal Artificial Intelligence?
• Sequential Decision Theory solves the problem of rational agents in
uncertain worlds if the environmental probability distribution is
known.

• Solomonoff’s theory of Universal Induction
solves the problem of sequence prediction
for unknown prior distribution.

• Combining both ideas one arrives at

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Approximation and Implementation: Single agent that learns to play
TicTacToe/Pacman/Poker/... from scratch.
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[http://arxiv.org/abs/0909.0801]
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Relevant Research Fields

(Universal) Artificial Intelligence has interconnections with

(draws from and contributes to) many research fields:

• computer science (artificial intelligence, machine learning),

• engineering (information theory, adaptive control),

• economics (rational agents, game theory),

• mathematics (statistics, probability),

• psychology (behaviorism, motivation, incentives),

• philosophy (reasoning, induction, knowledge).
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Relation between ML & RL & (U)AI 

Universal Artificial Intelligence
Covers all Reinforcement Learning problem types

RL Problems 

& Algorithms

Stochastic, 
unknown, 
non-i.i.d. 
environments

Artificial

Intelligence

Traditionally 
deterministic, 
known  world / 
planning problem

Statistical 

Machine Learning

Mostly i.i.d. data 
classification, 

regression, 
clustering
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Course Highlights

• Formal definition of (general rational) Intelligence.

• Optimal rational agent for arbitrary problems.

• Philosophical, mathematical, and computational background.

• Some approximations, implementations, and applications.

(learning TicTacToe, PacMan, simplified Poker from scratch)

• State-of-the-art artificial general intelligence.
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1 A SHORT TOUR THROUGH THE

COURSE
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Informal Definition of (Artificial) Intelligence

Intelligence measures an agent’s ability to achieve goals

in a wide range of environments. [S. Legg and M. Hutter]

Emergent: Features such as the ability to learn and adapt, or to
understand, are implicit in the above definition as these capacities
enable an agent to succeed in a wide range of environments.

The science of Artificial Intelligence is concerned with the construction
of intelligent systems/artifacts/agents and their analysis.

What next? Substantiate all terms above: agent, ability, utility, goal,
success, learn, adapt, environment, ...

Never trust a theory if it is not supported by an experiment=== =====
experiment theory
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Induction→Prediction→Decision→Action

Having or acquiring or learning or inducing a model of the environment

an agent interacts with allows the agent to make predictions and utilize

them in its decision process of finding a good next action.

Induction infers general models from specific observations/facts/data,

usually exhibiting regularities or properties or relations in the latter.

Example

Induction: Find a model of the world economy.

Prediction: Use the model for predicting the future stock market.

Decision: Decide whether to invest assets in stocks or bonds.

Action: Trading large quantities of stocks influences the market.
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Science ≈ Induction ≈ Occam’s Razor

• Grue Emerald Paradox:

Hypothesis 1: All emeralds are green.

Hypothesis 2: All emeralds found till y2020 are green,

thereafter all emeralds are blue.

• Which hypothesis is more plausible? H1! Justification?

• Occam’s razor: take simplest hypothesis consistent with data.

is the most important principle in machine learning and science.

• Problem: How to quantify “simplicity”? Beauty? Elegance?

Description Length!

[The Grue problem goes much deeper. This is only half of the story]
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Information Theory & Kolmogorov Complexity

• Quantification/interpretation of Occam’s razor:

• Shortest description of object is best explanation.

• Shortest program for a string on a Turing machine

T leads to best extrapolation=prediction.

KT (x) = min
p

{ℓ(p) : T (p) = x}

• Prediction is best for a universal Turing machine U .

Kolmogorov-complexity(x) = K(x) = KU (x) ≤ KT (x) + cT
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Bayesian Probability Theory

Given (1): Models P (D|Hi) for probability of

observing data D, when Hi is true.

Given (2): Prior probability over hypotheses P (Hi).

Goal: Posterior probability P (Hi|D) of Hi,

after having seen data D.

Solution:

Bayes’ rule: P (Hi|D) =
P (D|Hi) · P (Hi)∑
i P (D|Hi) · P (Hi)

(1) Models P (D|Hi) usually easy to describe (objective probabilities)

(2) But Bayesian prob. theory does not tell us how to choose the prior

P (Hi) (subjective probabilities)
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Algorithmic Probability Theory

• Epicurus: If more than one theory is consistent

with the observations, keep all theories.

• ⇒ uniform prior over all Hi?

• Refinement with Occam’s razor quantified

in terms of Kolmogorov complexity:

P (Hi) := 2−KT/U (Hi)

• Fixing T we have a complete theory for prediction.

Problem: How to choose T .

• Choosing U we have a universal theory for prediction.

Observation: Particular choice of U does not matter much.

Problem: Incomputable.
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Inductive Inference & Universal Forecasting

• Solomonoff combined Occam, Epicurus, Bayes, and

Turing into one formal theory of sequential prediction.

• M(x) = probability that a universal Turing

machine outputs x when provided with

fair coin flips on the input tape.

• A posteriori probability of y given x is M(y|x) =M(xy)/M(x).

• Given ẋ1, .., ẋt−1, the probability of xt is M(xt|ẋ1...ẋt−1).

• Immediate “applications”:

- Weather forecasting: xt ∈ {sun,rain}.
- Stock-market prediction: xt ∈ {bear,bull}.
- Continuing number sequences in an IQ test: xt ∈ N.

• Optimal universal inductive reasoning system!
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The Minimum Description Length Principle

• Approximation of Solomonoff,

since M is incomputable:

• M(x) ≈ 2−KU (x) (quite good)

• KU (x) ≈ KT (x) (very crude)

• Predict y of highest M(y|x) is approximately same as

• MDL: Predict y of smallest KT (xy).
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Application: Universal Clustering

• Question: When is object x similar to object y?

• Universal solution: x similar to y
⇔ x can be easily (re)constructed from y
⇔ K(x|y) := min{ℓ(p) : U(p, y) = x} is small.

• Universal Similarity: Symmetrize&normalize K(x|y).

• Normalized compression distance: Approximate K ≡ KU by KT .

• Practice: For T choose (de)compressor like lzw or gzip or bzip(2).

• Multiple objects ⇒ similarity matrix ⇒ similarity tree.

• Applications: Completely automatic reconstruction (a) of the
evolutionary tree of 24 mammals based on complete mtDNA, and
(b) of the classification tree of 52 languages based on the
declaration of human rights and (c) many others. [Cilibrasi&Vitanyi’05]
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Sequential Decision Theory

Setup: For t = 1, 2, 3, 4, ...

Given sequence x1, x2, ..., xt−1

(1) predict/make decision yt,

(2) observe xt,

(3) suffer loss Loss(xt, yt),

(4) t→ t+ 1, goto (1)

Goal: Minimize expected Loss.

Greedy minimization of expected loss is optimal if:

Important: Decision yt does not influence env. (future observations).

Loss function is known.

Problem: Expectation w.r.t. what?

Solution: W.r.t. universal distribution M if true distr. is unknown.
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Example: Weather Forecasting

Observation xt ∈ X = {sunny, rainy}

Decision yt ∈ Y = {umbrella, sunglasses}

Loss sunny rainy

umbrella 0.1 0.3

sunglasses 0.0 1.0

Taking umbrella/sunglasses does not influence future weather

(ignoring butterfly effect)
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Agent Model
with Reward

if actions/decisions a

influence the environment q

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

������ HHHHHY

�������1PPPPPPPq
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Rational Agents in Known Environment

• Setup: Known deterministic or probabilistic environment

• Fields: AI planning & sequential decision theory & control theory

• Greedy maximization of reward r (=−Loss) no longer optimal.

Example: Chess

• Agent has to be farsighted.

• Optimal solution: Maximize future (expected) reward sum,

called value.

• Problem: Things drastically change if environment is unknown
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Rational Agents in Unknown Environment
Additional problem: (probabilistic) environment unknown.

Fields: reinforcement learning and adaptive control theory

Big problem: Exploration versus exploitation

Bayesian approach: Mixture distribution ξ.

1. What performance does Bayes-optimal policy imply?
It does not necessarily imply self-optimization
(Heaven&Hell example).

2. Computationally very hard problem.

3. Choice of horizon? Immortal agents are lazy.

Universal Solomonoff mixture ⇒ universal agent AIXI.

Represents a formal (math., non-comp.) solution to the AI problem?

Most (all AI?) problems are easily phrased within AIXI.
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Computational Issues: Universal Search
• Levin search: Fastest algorithm for
inversion and optimization problems.

• Theoretical application:
Assume somebody found a non-constructive
proof of P=NP, then Levin-search is a polynomial
time algorithm for every NP (complete) problem.

• Practical (OOPS) applications (J. Schmidhuber)
Mazes, towers of hanoi, robotics, ...

• FastPrg: The asymptotically fastest and shortest algorithm for all
well-defined problems.

• Computable Approximations of AIXI:
AIXItl and AIξ and MC-AIXI-CTW and ΦMDP.

• Human Knowledge Compression Prize: (50’000C=)
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Monte-Carlo AIXI Applications
without providing any domain knowledge, the same agent is

able to self-adapt to a diverse range of interactive environments.
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Experience

Optimal
Cheese Maze
Tiger
4x4 Grid
TicTacToe
Biased RPS
Kuhn Poker
Pacman

[VNH+11]

www.youtube.com/watch?v=yfsMHtmGDKE
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Discussion at End of Course

• What has been achieved?

• Made assumptions.

• General and personal remarks.

• Open problems.

• Philosophical issues.
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Exercises

1. [C10] What could the probability p that the sun will rise tomorrow

be? What might a philosopher, statistician, physicist, etc. say?

2. [C15] Justify Laplace’ rule (p = n+1
n+2 , where n= #days sun rose in

past)

3. [C05] Predict sequences:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,?

3,1,4,1,5,9,2,6,5,3,?,

1,2,3,4,?

4. [C10] Argue in (1) and (3) for different continuations.
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Introductory Literature

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to
Automata Theory, Language, and Computation. Addison-Wesley,
3rd edition, 2006.

[RN10] S. J. Russell and P. Norvig. Artificial Intelligence. A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 3rd edition, 2010.

[LV08] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov
Complexity and its Applications. Springer, Berlin, 3rd edition, 2008.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[Leg08] S. Legg. Machine Super Intelligence. PhD Thesis, Lugano, 2008.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential Decisions
based on Algorithmic Probability. Springer, Berlin, 2005.

See http://www.hutter1.net/ai/introref.htm for more.



Information Theory & Kolmogorov Complexity - 37 - Marcus Hutter

2 INFORMATION THEORY &

KOLMOGOROV COMPLEXITY

• Philosophical Issues

• Definitions & Notation

• Turing Machines

• Kolmogorov Complexity

• Computability Concepts

• Discussion & Exercises
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2.1 Philosophical Issues: Contents

• Induction/Prediction Examples

• The Need for a Unified Theory

• On the Foundations of AI and ML

• Example 1: Probability of Sunrise Tomorrow

• Example 2: Digits of a Computable Number

• Example 3: Number Sequences

• Occam’s Razor to the Rescue

• Foundations of Induction

• Sequential/Online Prediction – Setup

• Dichotomies in AI and ML

• Induction versus Deduction
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Philosophical Issues: Abstract

I start by considering the philosophical problems concerning machine

learning in general and induction in particular. I illustrate the problems

and their intuitive solution on various (classical) induction examples.

The common principle to their solution is Occam’s simplicity principle.

Based on Occam’s and Epicurus’ principle, Bayesian probability theory,

and Turing’s universal machine, Solomonoff developed a formal theory

of induction. I describe the sequential/online setup considered in this

lecture series and place it into the wider machine learning context.
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Induction/Prediction Examples
Hypothesis testing/identification: Does treatment X cure cancer?
Do observations of white swans confirm that all ravens are black?

Model selection: Are planetary orbits circles or ellipses?
How many wavelets do I need to describe my picture well?
Which genes can predict cancer?

Parameter estimation: Bias of my coin. Eccentricity of earth’s orbit.

Sequence prediction: Predict weather/stock-quote/... tomorrow,
based on past sequence. Continue IQ test sequence like 1,4,9,16,?

Classification can be reduced to sequence prediction:
Predict whether email is spam.

Question: Is there a general & formal & complete & consistent theory
for induction & prediction?

Beyond induction: active/reward learning, fct. optimization, game theory.
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The Need for a Unified Theory
Why do we need or should want a unified theory of induction?

• Finding new rules for every particular (new) problem is cumbersome.

• A plurality of theories is prone to disagreement or contradiction.

• Axiomatization boosted mathematics&logic&deduction and so
(should) induction.

• Provides a convincing story and conceptual tools for outsiders.

• Automatize induction&science (that’s what machine learning does)

• By relating it to existing narrow/heuristic/practical approaches we
deepen our understanding of and can improve them.

• Necessary for resolving philosophical problems.

• Unified/universal theories are often beautiful gems.

• There is no convincing argument that the goal is unattainable.
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On the Foundations of Artificial Intelligence

• Example: Algorithm/complexity theory: The goal is to find fast

algorithms solving problems and to show lower bounds on their

computation time. Everything is rigorously defined: algorithm,

Turing machine, problem classes, computation time, ...

• Most disciplines start with an informal way of attacking a subject.

With time they get more and more formalized often to a point

where they are completely rigorous. Examples: set theory, logical

reasoning, proof theory, probability theory, infinitesimal calculus,

energy, temperature, quantum field theory, ...

• Artificial Intelligence: Tries to build and understand systems that

learn from past data, make good prediction, are able to generalize,

act intelligently, ... Many terms are only vaguely defined or there

are many alternate definitions.
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Example 1: Probability of Sunrise Tomorrow

What is the probability p(1|1d) that the sun will rise tomorrow?

(d = past # days sun rose, 1 =sun rises. 0 = sun will not rise)

• p is undefined, because there has never been an experiment that

tested the existence of the sun tomorrow (ref. class problem).

• The p = 1, because the sun rose in all past experiments.

• p = 1− ϵ, where ϵ is the proportion of stars that explode per day.

• p = d+1
d+2 , which is Laplace rule derived from Bayes rule.

• Derive p from the type, age, size and temperature of the sun, even

though we never observed another star with those exact properties.

Conclusion: We predict that the sun will rise tomorrow with high

probability independent of the justification.



Information Theory & Kolmogorov Complexity - 44 - Marcus Hutter

Example 2: Digits of a Computable Number

• Extend 14159265358979323846264338327950288419716939937?

• Looks random?!

• Frequency estimate: n = length of sequence. ki= number of

occured i =⇒ Probability of next digit being i is ki

n .

Asymptotically ki

n → 1
10 (seems to be) true.

• But we have the strong feeling that (i.e. with high probability) the

next digit will be 5 because the previous digits were the expansion

of π.

• Conclusion: We prefer answer 5, since we see more structure in the

sequence than just random digits.
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Example 3: Number Sequences

Sequence: x1, x2, x3, x4, x5, ...
1, 2, 3, 4, ?, ...

• x5 = 5, since xi = i for i = 1..4.

• x5 = 29, since xi = i4 − 10i3 + 35i2 − 49i+ 24.

Conclusion: We prefer 5, since linear relation involves less arbitrary

parameters than 4th-order polynomial.

Sequence: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,?

• 61, since this is the next prime

• 60, since this is the order of the next simple group

Conclusion: We prefer answer 61, since primes are a more familiar

concept than simple groups.

On-Line Encyclopedia of Integer Sequences:

http://www.research.att.com/∼njas/sequences/
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Occam’s Razor to the Rescue

• Is there a unique principle which allows us to formally arrive at a

prediction which

- coincides (always?) with our intuitive guess -or- even better,

- which is (in some sense) most likely the best or correct answer?

• Yes! Occam’s razor: Use the simplest explanation consistent with

past data (and use it for prediction).

• Works! For examples presented and for many more.

• Actually Occam’s razor can serve as a foundation of machine

learning in general, and is even a fundamental principle (or maybe

even the mere definition) of science.

• Problem: Not a formal/mathematical objective principle.

What is simple for one may be complicated for another.
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Dichotomies in Artificial Intelligence

scope of this course ⇔ scope of other lectures

(machine) learning / statistical ⇔ logic/knowledge-based (GOFAI)

online learning ⇔ offline/batch learning

passive prediction ⇔ (re)active learning

Bayes ⇔ MDL ⇔ Expert ⇔ Frequentist

uninformed / universal ⇔ informed / problem-specific

conceptual/mathematical issues ⇔ computational issues

exact/principled ⇔ heuristic

supervised learning ⇔ unsupervised ⇔ RL learning

exploitation ⇔ exploration

action ⇔ decision ⇔ prediction ⇔ induction
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Induction ⇔ Deduction
Approximate correspondence between

the most important concepts in induction and deduction.

Induction ⇔ Deduction

Type of inference: generalization/prediction ⇔ specialization/derivation

Framework: probability axioms =̂ logical axioms

Assumptions: prior =̂ non-logical axioms

Inference rule: Bayes rule =̂ modus ponens

Results: posterior =̂ theorems

Universal scheme: Solomonoff probability =̂ Zermelo-Fraenkel set theory

Universal inference: universal induction =̂ universal theorem prover

Limitation: incomputable =̂ incomplete (Gödel)

In practice: approximations =̂ semi-formal proofs

Operation: computation =̂ proof

The foundations of induction are as solid as those for deduction.
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2.2 Definitions & Notation: Contents

• Strings and Natural Numbers

• Identification of Strings & Natural Numbers

• Prefix Sets & Codes / Kraft Inequality

• Pairing Strings

• Asymptotic Notation
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Strings and Natural Numbers

• i, k, n, t ∈ N = {1, 2, 3, ...} natural numbers,

• B = {0, 1} binary alphabet,

• x, y, z ∈ B∗ finite binary strings,

• ω ∈ B∞ infinite binary sequences,

• ϵ for the empty string,

• 1n the string of n ones,

• ℓ(x) for the length of string x,

• xy = x ◦ y for the concatenation of string x with y.

• =̂ means ‘corresponds to’. No formal meaning.
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Identification of Strings & Natural Numbers

• Every countable set is ∼= N (by means of a bijection).

• Interpret a string as a binary representation of a natural number.

• Problem: Not unique: 00101 ∼= 5 ∼= 101.

• Use some bijection between natural numbers N and strings B∗.

• Problem: Not unique when concatenated, e.g.

5 ◦ 2 ∼= 10 ◦ 1 = 101 = 1 ◦ 01 ∼= 2 ◦ 4.

• First-order prefix coding x̄ := 1ℓ(x)0x.

• Second-order prefix coding x‘ := ℓ(x)x. [Elias Delta coding]
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Identification of Strings & Natural Numbers
x ∈ N0 0 1 2 3 4 5 6 7 · · ·

x ∈ B∗ ϵ 0 1 00 01 10 11 000 · · ·

ℓ(x) 0 1 1 2 2 2 2 3 · · ·

x̄ = 1ℓ(x)0x 0 100 101 11000 11001 11010 11011 1110000 · · ·

x‘ = ℓ(x)x 0 100 0 100 1 101 00 101 01 101 10 101 11 11000 000 · · ·

x‘ is longer than x̄ only for x < 15, but shorter for all x > 30.

With this identification

log(x+1)− 1 < ℓ(x) ≤ log(x+1).

ℓ(x̄) = 2ℓ(x) + 1 ≤ 2log(x+1) + 1 ∼ 2logx

ℓ(x‘) ≤ log(x+1) + 2log(log(x+1)+1) + 1 ∼ logx+ 2loglogx

[Higher order code: Recursively define ϵ′ := 0 and x′ := 1[ℓ(x)−1]′x
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Prefix Sets & Codes
String x is (proper) prefix of y :⇐⇒ ∃ z( ̸= ϵ) such that xz = y.

Set P is prefix-free or a prefix code :⇐⇒ no element is a proper
prefix of another.

Example: A self-delimiting code (e.g. P = {0, 10, 11}) is prefix-free.

Kraft Inequality

Theorem 2.1 (Kraft Inequality)

For a prefix code P we have
∑

x∈P 2−ℓ(x) ≤ 1.

Conversely, let ℓ1, ℓ2, ... be a countable sequence of natural numbers

such that Kraft’s inequality
∑

k 2
−ℓk ≤ 1 is satisfied. Then there

exists a prefix code P with these lengths of its binary code.
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Proof of the Kraft-Inequality

Proof ⇒: Assign to each x ∈ P the interval Γx := [0.x, 0.x+ 2−ℓ(x)).

Length of interval Γx is 2−ℓ(x).

Intervals are disjoint, since P is prefix free, hence∑
x∈P

2−ℓ(x) =
∑
x∈P

Length(Γx) ≤ Length([0, 1]) = 1

Proof idea ⇐:

Choose l1, l2, ... in increasing order.

Successively chop off intervals of lengths 2−l1 , 2−l2 , ...

from left to right from [0, 1) and

define left interval boundary as code.
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Pairing Strings

• P = {x̄ : x ∈ B∗} is a prefix code with ℓ(x̄) = 2ℓ(x) + 1.

• P = {x‘ : x ∈ B∗} forms an asymptotically shorter prefix code with

ℓ(x‘) = ℓ(x) + 2ℓ(ℓ(x)) + 1.

• We pair strings x and y (and z) by ⟨x, y⟩ := x‘y (and

⟨x, y, z⟩ := x‘y‘z) which are uniquely decodable, since x‘ and y‘ are

prefix.

• Since ‘ serves as a separator we also write f(x, y) instead of f(x‘y)

for functions f .
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Asymptotic Notation

• f(n)
n→∞−→ g(n) means limn→∞[f(n)− g(n)] = 0.

Say: f converges to g, w/o implying that limn→∞ g(n) itself exists.

• f(n) ∼ g(n) means ∃0 < c <∞ : limn→∞ f(n)/g(n) = c.

Say: f is asymptotically proportional to g.

• a . b means a is not much larger than b (precision unspecified).

• f(x) = O(g(x)) means ∃c∀x : |f(x)| ≤ c|g(x)|+ c for some c.

f(x) = o(g(x)) means limx→∞ f(x)/g(x) = 0.

• f(x)
×
< g(x) means f(x) = O(g(x)),

f(x)
+
< g(x) means f(x) ≤ g(x) +O(1),

f(x)
log
< g(x) means f(x) ≤ g(x) +O(log g(x)).

• f
∗
> g :⇔ g

∗
< f , f

∗
= g :⇔ f

∗
< g ∧ f

∗
> g , ∗ ∈ {+,×, log, ...}
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2.3 Turing Machines: Contents

• Turing Machines & Effective Enumeration

• Church-Turing Theses

• Short Compiler Assumption

• (Universal) Prefix & Monotone Turing Machine

• Halting Problem
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Turing Machines & Effective Enumeration
• Turing machine (TM) = (mathema-
tical model for an) idealized computer.

• See e.g. textbook [HMU06]
Show Turing Machine in Action: TuringBeispielAnimated.gif

• Instruction i: If symbol on tape
under head is 0/1, write 0/1/-
and move head left/right/not
and goto instruction=state j.

• {partial recursive functions }
≡ {functions computable with a TM}.

• A set of objects S = {o1, o2, o3, ...} can be (effectively) enumerated
:⇐⇒ ∃ TM machine mapping i to ⟨oi⟩,
where ⟨⟩ is some (often omitted) default coding of elements in S.
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Church-Turing Theses

The importance of partial recursive functions and Turing machines

stems from the following theses:

Thesis 2.2 (Turing) Everything that can be reasonably said to be

computable by a human using a fixed procedure can also be com-

puted by a Turing machine.

Thesis 2.3 (Church) The class of algorithmically computable nu-

merical functions (in the intuitive sense) coincides with the class of

partial recursive functions.
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Short Compiler Assumption

Assumption 2.4 (Short compiler)

Given two natural Turing-equivalent formal systems F1 and F2,

then there always exists a single short program on F2 which is

capable of interpreting all F1-programs.

Lisp, Forth, C, Universal TM, ... have mutually short interpreters.

⇒ equivalence is effective

⇒ size of shortest descriptions essentially the same.

Conversion: Interpreter ; compiler, by attaching the interpreter to the

program to be interpreted and by “selling” the result as a compiled

version.
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Informality of the Theses & Assumption

• The theses are not provable or falsifiable theorems, since human,

reasonable, intuitive, and natural have not been defined rigorously.

• One may define intuitively computable as Turing computable and a

natural Turing-equivalent system as one which has a small (say

< 105 bits) interpreter/compiler on a once and for all agreed-upon

fixed reference universal Turing machine.

• The theses would then be that these definitions are reasonable.



Information Theory & Kolmogorov Complexity - 62 - Marcus Hutter

Prefix Turing Machine
For technical reasons we need the following variants of a Turing machine

Definition 2.5 (Prefix Turing machine T (pTM))

• one unidirectional read-only input tape,

• one unidirectional write-only output tape,

• some bidirectional work tapes, initially filled with zeros.

• all tapes are binary (no blank symbol!),

• T halts on input p with output x :⇐⇒ T (p) = x

:⇐⇒ exactly p is to the left of the input head

and x is to the left of the output head after T halts.

• {p : ∃x : T (p) = x} forms a prefix code.

• We call such codes p self-delimiting programs.
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Monotone Turing Machine
For technical reasons we need the following variants of a Turing machine

Definition 2.6 (Monotone Turing machine T (mTM))

• one unidirectional read-only input tape,

• one unidirectional write-only output tape,

• some bidirectional work tapes, initially filled with zeros.

• all tapes are binary (no blank symbol!),

• T outputs/computes a string starting with x (or a sequence ω)

on input p :⇐⇒ T (p) = x∗ (or T (p) = ω) :⇐⇒ p is to the left

of the input head when the last bit of x is output.

• T may continue operation and need not to halt.

• For given x, {p : T (p) = x∗} forms a prefix code.

• We call such codes p minimal programs.
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Universal Prefix/Monotone Turing Machine

⟨T ⟩ := some canonical binary coding of (table of rules) of TM T

⇒ set of Turing-machines {T1, T2, ...} can be effectively enumerated.

⇒ ∃

Theorem 2.7 (Universal prefix/monotone Turing machine U)

which simulates (any) pTM/mTM Ti with input y‘q if fed with input

y‘i‘q, i.e.

U(y‘i‘q) = Ti(y‘q) ∀y, i, q

For p ̸= y‘i‘q, U(p) outputs nothing. y is side information.

Proof: See [HMU06] for normal Turing machines.



Information Theory & Kolmogorov Complexity - 65 - Marcus Hutter

Illustration

U = some Personal Computer

Ti = Lisp machine,

q = Lisp program.

y = input to Lisp program.

⇒ Ti(y‘q) = execution of Lisp program q with input y on Lisp machine

Ti.

⇒ U(y‘i‘q) = running on Personal computer U the Lisp interpreter i

with program q and input y.

Call one particular prefix/monotone U the reference UTM.
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Halting Problem

We have to pay a big price for the existence of universal TM U :

Namely the undecidability of the halting problem [Turing 1936]:

Theorem 2.8 (Halting Problem)

There is no TM T : T (i‘p) = 1 ⇐⇒ Ti(p) does not halt.

Proof: Diagonal argument:

Assume such a TM T exists

⇒ R(i) := T (i‘i) is computable.

⇒ ∃j : Tj ≡ R

⇒ R(j) = T (j‘j) = 1 ⇐⇒ Tj(j) = R(j) does not halt. †
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2.4 Kolmogorov Complexity: Contents

• Formalization of Simplicity & Complexity

• Prefix Kolmogorov Complexity K

• Properties of K

• General Proof Ideas

• Monotone Kolmogorov Complexity Km
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Formalization of Simplicity & Complexity

• Intuition: A string is simple if it can be described in a few words,

like “the string of one million ones”,

• and is complex if there is no such short description, like for a

random string whose shortest description is specifying it bit by bit.

• Effective descriptions or codes ⇒ Turing machines as decoders.

• p is description/code of x on pTM T :⇐⇒ T (p) = x.

• Length of shortest description: KT (x) := minp{ℓ(p) : T (p) = x}.

• This complexity measure depends on T :-(
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Universality/Minimality of KU

Is there a TM which leads to shortest codes among all TMs for all x?

Remarkably, there exists a Turing machine (the universal one) which

“nearly” has this property:

Theorem 2.9 (Universality/Minimality of KU)

KU (x) ≤ KT (x) + cTU ,

where cTU

+
< KU (T ) <∞ is independent of x

Pair of UTMs U ′ and U ′′: |KU ′(x)−KU ′′(x)| ≤ cU ′U ′′ .

Assumption 2.4 holds ⇐⇒ cU ′U ′′ small for natural UTMs U ′ and U ′′.

Henceforth we write O(1) for terms like cU ′U ′′ .
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Proof of Universality of KU
Proof idea: If p is the shortest description of x under T = Ti, then i‘p is

a description of x under U .

Formal proof:

Let p be shortest description of x under T , i.e. ℓ(p) = KT (x).

∃i : T = Ti

⇒ U(i‘p) = x

⇒ KU (x) ≤ ℓ(i‘p) = ℓ(p) + cTU with cTU := ℓ(i‘).

Refined proof:

p := argminp{ℓ(p) : T (p) = x} = shortest description of x under T

r := argminp{ℓ(p) : U(p) = ⟨T ⟩} = shortest description of T under U

q := decode r and simulate T on p.

⇒ U(qrp) = T (p) = x ⇒
KU (x) ≤ ℓ(qrp)

+
= ℓ(p) + ℓ(r) = KT (x) +KU (⟨T ⟩).
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(Conditional) Prefix Kolmogorov Complexity

Definition 2.10 ((conditional) prefix Kolmogorov complexity)

= shortest program p, for which reference U outputs x (given y):

K(x) := min
p

{ℓ(p) : U(p) = x},

K(x|y) := min
p

{ℓ(p) : U(y‘p) = x}

For (non-string) objects: K(object) := K(⟨object⟩),

e.g. K(x, y) = K(⟨x, y⟩) = K(x‘y).
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Upper Bound on K

Theorem 2.11 (Upper Bound on K)

K(x)
+
< ℓ(x) + 2log ℓ(x), K(n)

+
< logn+ 2log log n

Proof:

There exists a TM Ti0 with i0 = O(1) and Ti0(ϵ‘x‘) = x,

then U(ϵ‘i‘0x‘) = x,

hence K(x) ≤ ℓ(ϵ‘i‘0x‘)
+
= ℓ(x‘)

+
< ℓ(x) + 2logℓ(x).
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Lower Bound on K / Kraft Inequality

Theorem 2.12 (lower bound for most n, Kraft inequality)∑
x∈B∗

2−K(x) ≤ 1, K(x) ≥ l(x) for ‘most’ x

K(n) → ∞ for n→ ∞.

This is just Kraft’s inequality which implies a lower bound on K valid

for ‘most’ n.

‘most’ means that there are only o(N) exceptions for n ∈ {1, ..., N}.
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Extra Information & Subadditivity

Theorem 2.13 (Extra Information)

K(x|y)
+
< K(x)

+
< K(x, y)

Providing side information y can never increase code length,

Requiring extra information y can never decrease code length.

Proof: Similarly to Theorem 2.11

Theorem 2.14 (Subadditivity)

K(xy)
+
< K(x, y)

+
< K(x) +K(y|x)

+
< K(x) +K(y)

Coding x and y separately never helps.

Proof: Similarly to Theorem 2.13
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Symmetry of Information

Theorem 2.15 (Symmetry of Information)

K(x|y,K(y))+K(y)
+
= K(x, y)

+
= K(y, x)

+
= K(y|x,K(x))+K(x)

Is the analogue of the logarithm of the multiplication rule for conditional

probabilities (see later).

Proof: ≥ = ≤ similarly to Theorem 2.14.

For ≤ = ≥, deep result: see [LV08, Th.3.9.1].



Information Theory & Kolmogorov Complexity - 76 - Marcus Hutter

Proof Sketch of K(y|x)+K(x)≤K(x, y)+O(log)
all +O(log) terms will be suppressed and ignored. Counting argument:

(1) Assume K(y|x) > K(x, y)−K(x).

(2) (x, y) ∈ A := {⟨u, z⟩ : K(u, z) ≤ k}, k := K(x, y), K(k) = O(log)

(3) y ∈ Ax := {z : K(x, z) ≤ k}
(4) Use index of y in Ax to describe y: K(y|x) ≤ log |Ax|
(5) log |Ax| > K(x, y)−K(x) =: l by (1) and (4), K(l) = O(log)

(6) x ∈ U := {u : log |Au| > l} by (5)

(7) {⟨u, z⟩ : u ∈ U, z ∈ Au} ⊆ A

(8) log |A| ≤ k by (2), since at most 2k codes of length ≤ k

(9) 2l|U | < min{|Au| : u ∈ U}|U | ≤ |A| ≤ 2k by (6),(7),(8), resp.

(10) K(x) ≤ log |U | < k − l = K(x) by (6) and (9). Contradiction!
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Information Non-Increase

Theorem 2.16 (Information Non-Increase)

K(f(x))
+
< K(x) +K(f) for recursive f : B∗ → B∗

Definition: The Kolmogorov complexity K(f) of a function f is defined

as the length of the shortest self-delimiting program on a prefix TM

computing this function.

Interpretation: Transforming x does not increase its information content.

Hence: Switching from one coding scheme to another by means of a

recursive bijection leaves K unchanged within additive O(1) terms.

Proof: Similarly to Theorem 2.14
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Coding Relative to Probability Distribution,
Minimal Description Length (MDL) Bound

Theorem 2.17 (Probability coding / MDL)

K(x)
+
< −logP (x) +K(P )

if P : B∗ → [0, 1] is enumerable and
∑
x∈B∗

P (x) ≤ 1

This is at the heart of the MDL principle [Ris89],

which approximates K(x) by −logP (x) +K(P ).
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Proof of MDL Bound

Proof for
∑

x P (x) = 1: [see [LV08, Sec.4.3] for general P ]

Idea: Use the Shannon-Fano code based on probability distribution P .

Let sx := ⌈− log2 P (x)⌉ ∈ N

⇒
∑

x 2
−sx ≤

∑
x P (x) ≤ 1.

⇒: ∃ prefix code p for x with ℓ(p) = sx (by Kraft inequality)

Since the proof of Kraft inequality for known
∑

x P (x) is (can be made)

constructive, there exists an effective prefix code in the sense that

∃ pTM T : ∀x∃p : T (p) = x and ℓ(p) = sx.

⇒ K(x)
+
< KT (x) +K(T ) ≤ sx +K(T )

+
< −logP (x) +K(P )

where we used Theorem 2.9.
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General Proof Ideas

• All upper bounds on K(z) are easily proven by devising some

(effective) code for z of the length of the right-hand side of the

inequality and by noting that K(z) is the length of the shortest

code among all possible effective codes.

• Lower bounds are usually proven by counting arguments

(Easy for Thm.2.12 by using Thm.2.1 and hard for Thm.2.15)

• The number of short codes is limited.

More precisely: The number of prefix codes of length ≤ ℓ is

bounded by 2ℓ.
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Remarks on Theorems 2.11-2.17

All (in)equalities remain valid if K is (further) conditioned under some

z, i.e. K(...) ; K(...|z) and K(...|y) ; K(...|y, z).
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Relation to Shannon Entropy
Let X,Y ∈ X be discrete random variables with distribution P (X,Y ).

Definition 2.18 (Definition of Shannon entropy)

Entropy(X) ≡ H(X) := −
∑

x∈X P (x) logP (x)

Entropy(X|Y ) ≡ H(X|Y ) := −
∑

y∈Y P (y)
∑

x∈X P (x|y) logP (x|y)

Theorem 2.19 (Properties of Shannon entropy)

• Upper bound: H(X) ≤ log |X | = n for X = Bn

• Extra information: H(X|Y ) ≤ H(X) ≤ H(X,Y )

• Subadditivity: H(X,Y ) ≤ H(X) +H(Y )

• Symmetry: H(X|Y ) +H(Y ) = H(X,Y ) = H(Y,X)

• Information non-increase: H(f(X)) ≤ H(X) for any f

Relations for H are essentially expected versions of relations for K.
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Monotone Kolmogorov Complexity Km
A variant of K is the monotone complexity Km(x) defined as the
shortest program on a monotone TM computing a string starting with x:

Theorem 2.20 (Monotone Kolmogorov Complexity Km)

Km(x) := min
p

{ℓ(p) : U(p) = x∗}

has the following properties:

• Km(x)
+
< ℓ(x),

• Km(xy) ≥ Km(x) ∈ N0,

• Km(x)
+
< −logµ(x) +K(µ) if µ comp. measure (defined later).

It is natural to call an infinite sequence ω computable if Km(ω) <∞.
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2.5 Computability Concepts: Contents

• Computability Concepts

• Computability: Discussion

• (Non)Computability of K and Km
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Computable Functions

Definition 2.21 (Computable functions) We consider functions

f : N → R:
f is finitely computable or recursive iff there are Turing machines

T1/2 with output interpreted as natural numbers and f(x) = T1(x)
T2(x)

,

⇓
f is estimable iff ∃ recursive ϕ(·, ·) ∀ ε > 0 : |ϕ(x,⌊1ε ⌋) − f(x)| < ε

∀x.
⇓

f is lower semicomputable or enumerable iff ϕ(·, ·) is recursive and

limt→∞ ϕ(x, t) = f(x) and ϕ(x, t) ≤ ϕ(x, t+ 1).

⇓
f is approximable iff ϕ(·, ·) is recursive and limt→∞ ϕ(x, t) = f(x).
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Computability: Discussion

• What we call estimable is often just called computable.

• If f is estimable we can determine an interval estimate

f(x) ∈ [ŷ − ε, ŷ + ε].

• If f is only approximable or semicomputable we can still come

arbitrarily close to f(x) but we cannot devise a terminating

algorithm which produces an ε-approximation.

• f is upper semicomputable or co-enumerable

:⇔ −f is lower semicomputable or enumerable.

• In the case of lower/upper semicomputability we can at least finitely

compute lower/upper bounds to f(x).

• In case of approximability, the weakest computability form, even this

capability is lost.
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(Non)Computability of K and Km complexity

Theorem 2.22 ((Non)computability of K and Km Complexity)

The prefix complexity K : B∗ → N and the monotone complexity

Km : B∗ → N are co-enumerable, but not finitely computable.

Proof: Assume K is computable.

⇒ f(m) := min{n : K(n) ≥ m} exists by Theorem 2.12 and is

computable (and unbounded).

K(f(m)) ≥ m by definition of f .

K(f(m)) ≤ K(m) +K(f)
+
< 2logm by Theorem 2.16 and 2.11.

⇒ m ≤ 2logm+ c for some c, but this is false for sufficiently large m.

Co-enumerability of K as exercise.



Information Theory & Kolmogorov Complexity - 88 - Marcus Hutter

2.6 Discussion: Contents

• Applications of KC/AIT

• Outlook

• Summary

• Exercises

• Literature
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KC/AIT is a Useful Tool in/for

• quantifying simplicity/complexity and Ockham’s razor,

• quantification of Gödel’s incompleteness result,

• computational learning theory,

• combinatorics,

• time and space complexity of computations,

• average case analysis of algorithms,

• formal language and automata theory,

• lower bound proof techniques,

• probability theory,

• string matching,

• clustering by compression,

• physics and thermodynamics of computing,

• statistical thermodynamics / Boltzmann entropy / Maxwell daemon
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General Applications of AIT/KC
• (Martin-Löf) randomness of individual strings/sequences/object,

• information theory and statistics of individual objects,

• universal probability,

• general inductive reasoning and inference,

• universal sequence prediction,

• the incompressibility proof method,

• Turing machine complexity,

• structural complexity theory,

• oracles,

• logical depth,

• universal optimal search,

• dissipationless reversible computing,

• information distance,

• algorithmic rate-distortion theory.
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Industrial Applications of KC/AIT

• language recognition, linguistics,

• picture similarity,

• bioinformatics,

• phylogeny tree reconstruction,

• cognitive psychology,

• optical / handwritten character recognitions.
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Outlook

• Many more KC variants beyond K, Km, and KM .

• Resource (time/space) bounded (computable!) KC.

• See the excellent textbook [LV08].
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Summary

• A quantitative theory of information has been developed.

• Occam’s razor serves as the philosophical foundation of induction

and scientific reasoning.

• All enumerable objects are coded=identified as strings.

• Codes need to be prefix free, satisfying Kraft’s inequality.

• Augment Church-Turing thesis with the short compiler assumption.

• Kolmogorov complexity quantifies Occam’s razor,

and is the complexity measure.

• Major drawback: K is only semicomputable.



Information Theory & Kolmogorov Complexity - 94 - Marcus Hutter

Exercises 1–6
1. [C05] Formulate a sequence prediction task as a classification task

(Hint: add time tags).

2. [C15] Complete the table identifying natural numbers with (prefix)
strings to numbers up to 16. For which x is x‘ longer/shorter than
x̄, and how much?

3. [C10] Show that log(x+ 1)− 1 < ℓ(x) ≤ log(x+ 1) and
ℓ(x‘) . logx+ 2loglogx.

4. [C15] Prove ⇐ of Theorem 2.1

5. [C05] Show that for every string x there exists a universal Turing
machine U ′ such that KU ′(x) = 1. Argue that U ′ is not a natural
Turing machine if x is complex.

6. [C10] Show K(0n)
+
= K(1n)

+
= K(n digits of

π)
+
= K(n) ≤ logn+O(log log n).
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Exercises 7–12

7. [C15] The halting sequence h1:∞ is defined as hi = 1 ⇐⇒ Ti(ε)

halts, otherwise hi = 0. Show K(h1...hn) ≤ 2logn+O(log log n)

and Km(h1...hn) ≤ logn+O(log log n).

8. [C25] Show that the Kolmogorov complexity K, the halting

sequence h, and the halting probability Ω :=
∑

p:U(p) halts 2
−ℓ(p)

are Turing-reducible to each other.

9. [C10–40] Complete the proofs of the properties of K.

10. [C15] Show that a function is estimable if

and only if it is upper and lower semi-computable.

11. [C10] Prove Theorem 2.20 items 1-2.

12. [C15] Prove the implications in Definition 2.21
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3 BAYESIAN PROBABILITY THEORY

• Uncertainty and Probability

• Frequency Interpretation: Counting

• Objective Interpretation: Uncertain Events

• Subjective Interpretation: Degrees of Belief

• Kolmogorov’s Axioms of Probability Theory

• Bayes and Laplace Rule

• How to Determine Priors

• Discussion
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Bayesian Probability Theory: Abstract

The aim of probability theory is to describe uncertainty. There are

various sources and interpretations of uncertainty. I compare the

frequency, objective, and subjective probabilities, and show that they all

respect the same rules. I derive Bayes’ and Laplace’s famous and

fundamental rules, discuss the indifference, the maximum entropy, and

Ockham’s razor principle for choosing priors, and finally present two

brain-teasing paradoxes.
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Uncertainty and Probability

The aim of probability theory is to describe uncertainty.

Sources/interpretations for uncertainty:

• Frequentist: probabilities are relative frequencies.

(e.g. the relative frequency of tossing head.)

• Objectivist: probabilities are real aspects of the world.

(e.g. the probability that some atom decays in the next hour)

• Subjectivist: probabilities describe an agent’s degree of belief.

(e.g. it is (im)plausible that extraterrestrians exist)
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3.1 Frequency Interpretation:

Counting: Contents

• Frequency Interpretation: Counting

• Problem 1: What does Probability Mean?

• Problem 2: Reference Class Problem

• Problem 3: Limited to I.I.D
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Frequency Interpretation: Counting

• The frequentist interprets probabilities as relative frequencies.

• If in a sequence of n independent identically distributed (i.i.d.)

experiments (trials) an event occurs k(n) times, the relative

frequency of the event is k(n)/n.

• The limit limn→∞ k(n)/n is defined as the probability of the event.

• For instance, the probability of the event head in a sequence of

repeatedly tossing a fair coin is 1
2 .

• The frequentist position is the easiest to grasp, but it has several

shortcomings:
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What does Probability Mean?

• What does it mean that a property holds with a certain probability?

• The frequentist obtains probabilities from physical processes.

• To scientifically reason about probabilities one needs a math theory.

Problem: how to define random sequences?

• This is much more intricate than one might think, and has only

been solved in the 1960s by Kolmogorov and Martin-Löf.
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Problem 1: Frequency Interpretation is Circular

• Probability of event E is p := limn→∞
kn(E)

n ,

n = # i.i.d. trials, kn(E) = # occurrences of event E in n trials.

• Problem: Limit may be anything (or nothing):

e.g. a fair coin can give: Head, Head, Head, Head, ... ⇒ p = 1.

• Of course, for a fair coin this sequence is “unlikely”.

For fair coin, p = 1/2 with “high probability”.

• But to make this statement rigorous we need to formally know what

“high probability” means. Circularity!
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Problem 2: Reference Class Problem

• Philosophically and also often in real experiments it is hard to

justify the choice of the so-called reference class.

• For instance, a doctor who wants to determine the chances that a

patient has a particular disease by counting the frequency of the

disease in “similar” patients.

• But if the doctor considered everything he knows about the patient

(symptoms, weight, age, ancestry, ...) there would be no other

comparable patients left.
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Problem 3: Limited to I.I.D

• The frequency approach is limited to a (sufficiently large) sample of

i.i.d. data.

• In complex domains typical for AI, data is often non-i.i.d. and

(hence) sample size is often 1.

• For instance, a single non-i.i.d. historic weather data sequences is

given. We want to know whether certain properties hold for this

particular sequence.

• Classical probability non-constructively tells us that the set of

sequences possessing these properties has measure near 1, but

cannot tell which objects have these properties, in particular whether

the single observed sequence of interest has these properties.
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3.2 Objective Interpretation:

Uncertain Events: Contents

• Objective Interpretation: Uncertain Events

• Kolmogorov’s Axioms of Probability Theory

• Conditional Probability

• Example: Fair Six-Sided Die

• Bayes’ Rule 1
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Objective Interpretation: Uncertain Events

• For the objectivist probabilities are real aspects of the world.

• The outcome of an observation or an experiment is not

deterministic, but involves physical random processes.

• The set Ω of all possible outcomes is called the sample space.

• It is said that an event E ⊂ Ω occurred if the outcome is in E.

• In the case of i.i.d. experiments the probabilities p assigned to

events E should be interpretable as limiting frequencies, but the

application is not limited to this case.

• The Kolmogorov axioms formalize the properties which probabilities

should have.
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Kolmogorov’s Axioms of Probability Theory

Axioms 3.1 (Kolmogorov’s axioms of probability theory)
Let Ω be the sample space. Events are subsets of Ω.

• If A and B are events, then also the intersection A ∩ B, the
union A ∪B, and the difference A \B are events.

• The sample space Ω and the empty set {} are events.

• There is a function p which assigns nonnegative reals, called
probabilities, to each event.

• p(Ω) = 1, p({}) = 0.

• p(A ∪B) = p(A) + p(B)− p(A ∩B).

• For a decreasing sequence A1 ⊃ A2 ⊃ A3... of events with∩
nAn = {} we have limn→∞ p(An) = 0.

The function p is called a probability mass function, or, probability
measure, or, more loosely probability distribution (function).
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Conditional Probability

Definition 3.2 (Conditional probability) If A and B are events

with p(A) > 0, then the probability that event B will occur un-

der the condition that event A has occured is defined as

p(B|A) := p(A ∩B)

p(A)

• p(·|A) (as a function of the first argument) is also a probability
measure, if p(·) satisfies the Kolmogorov axioms.

• One can “verify the correctness” of the Kolmogorov axioms and the
definition of conditional probabilities in the case where probabilities
are identified with limiting frequencies.

• But the idea is to take the axioms as a starting point to avoid some
of the frequentist’s problems.
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Example: Fair Six-Sided Die
• Sample space: Ω = {1, 2, 3, 4, 5, 6}
• Events: Even= {2, 4, 6}, Odd= {1, 3, 5} ⊆ Ω

• Probability: p(6) = 1
6 , p(Even) = p(Odd) = 1

2

• Outcome: 6 ∈ E.

• Conditional probability: p(6|Even) = p(6and Even)

p(Even)
=

1/6

1/2
=

1

3

Bayes’ Rule 1

Theorem 3.3 (Bayes’ rule 1) If A and B are events with

p(A) > 0 and p(B) > 0, then p(B|A) = p(A|B)p(B)

p(A)

Bayes’ theorem is easily proven by applying Definition 3.2 twice.
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3.3 Subjective Interpretation:

Degrees of Belief: Contents

• Subjective Interpretation: Degrees of Belief

• Cox’s Axioms for Beliefs

• Cox’s Theorem

• Bayes’ Famous Rule
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Subjective Interpretation: Degrees of Belief

• The subjectivist uses probabilities to characterize an agent’s degree

of belief in something, rather than to characterize physical random

processes.

• This is the most relevant interpretation of probabilities in AI.

• We define the plausibility of an event as the degree of belief in the

event, or the subjective probability of the event.

• It is natural to assume that plausibilities/beliefs Bel(·|·) can be repr.

by real numbers, that the rules qualitatively correspond to common

sense, and that the rules are mathematically consistent. ⇒
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Cox’s Axioms for Beliefs

Axioms 3.4 (Cox’s (1946) axioms for beliefs)

• The degree of belief in event B (plausibility of event B), given
that event A occurred can be characterized by a real-valued
function Bel(B|A).

• Bel(Ω \ B|A) is a twice differentiable function of Bel(B|A) for
A ̸= {}.

• Bel(B ∩ C|A) is a twice continuously differentiable function of
Bel(C|B ∩A) and Bel(B|A) for B ∩A ̸= {}.

One can motivate the functional relationship in Cox’s axioms by
analyzing all other possibilities and showing that they violate common
sense [Tribus 1969].

The somewhat strong differentiability assumptions can be weakened to
more natural continuity and monotonicity assumptions [Aczel 1966].
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Cox’s Theorem

Theorem 3.5 (Cox’s theorem) Under Axioms 3.4 and some addi-

tional denseness conditions, Bel(·|A) is isomorphic to a probability

function in the sense that there is a continuous one–to-one onto

function g : R → [0, 1] such that p := g ◦ Bel satisfies Kolmogorov’s

Axioms 3.1 and is consistent with Definition 3.2.

Only recently, a loophole in Cox’s and other’s derivations have been

exhibited [Paris 1995] and fixed by making the mentioned “additional

denseness assumptions”.

Conclusion: Plausibilities follow the same rules as limiting frequencies.

Other justifications: Gambling / Dutch Book / Utility theory
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Bayes’ Famous Rule

Let D be some possible data (i.e. D is event with p(D) > 0) and

{Hi}i∈I be a countable complete class of mutually exclusive hypotheses

(i.e. Hi are events with Hi ∩Hj = {} ∀i ̸= j and
∪

i∈I Hi = Ω).

Given: p(Hi) = a priori plausibility of hypotheses Hi (subj. prob.)

Given: p(D|Hi) = likelihood of data D under hypothesis Hi (obj. prob.)

Goal: p(Hi|D) = a posteriori plausibility of hypothesis Hi (subj. prob.)

Theorem 3.6 (Bayes’ rule) p(Hi|D) =
p(D|Hi)p(Hi)∑
i∈I p(D|Hi)p(Hi)

Proof sketch: From the definition of conditional probability and∑
i∈I

p(Hi|...) = 1 ⇒
∑
i∈I

p(D|Hi)p(Hi) =
∑
i∈I

p(Hi|D)p(D) = p(D)
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Proof of Bayes Rule

p(A ∪B) = p(A) + p(B) if A ∩B = {}, since p({}) = 0.

⇒ for finite I by induction:
∑

i∈I p(Hi) = p(
∪

iHi) = p(Ω) = 1.

⇒ for countably infinite I = {1, 2, 3, ...} with Sn :=
∪∞

i=nHi:

n−1∑
i=1

p(Hi) + p(Sn) = p(
n−1∪
i=1

Hi ∪
∞∪
i=n

Hi) = p(Ω) = 1

S1 ⊃ S2 ⊃ S3....

Further, ω ∈ Ω ⇒ ∃n : ω ∈ Hn ⇒ ω ̸∈ Hi∀i > n ⇒ ω ̸∈ Si ∀i > n

⇒ ω ̸∈
∩

n Sn ⇒
∩

n Sn = {} (since ω was arbitrary).

⇒ 1 = lim
n→∞

n−1∑
i=1

p(Hi) + p(Sn) =
∞∑
i=1

p(Hi) =
∑
i∈I

p(Hi)
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Proof of Bayes Rule (ctnd)

By Definition 3.2 of conditional probability we have

p(Hi|D)p(D) = p(Hi ∩D) = p(D|Hi)p(Hi)

Summing over all hypotheses Hi gives∑
i∈I

p(D|Hi)p(Hi) =
∑
i∈I

p(Hi|D) · p(D) = 1 · p(D)

⇒ p(Hi|D) =
p(D|Hi)p(Hi)

p(D)
=

p(D|Hi)p(Hi)∑
i∈I p(D|Hi)p(Hi)
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3.4 Determining Priors: Contents

• How to Choose the Prior?

• Indifference or Symmetry Principle

• Example: Bayes’ and Laplace’s Rule

• The Maximum Entropy Principle ...

• Occam’s Razor — The Simplicity Principle
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How to Choose the Prior?

The probability axioms allow relating probabilities and plausibilities of

different events, but they do not uniquely fix a numerical value for each

event, except for the sure event Ω and the empty event {}.

We need new principles for determining values for at least some basis

events from which others can then be computed.

There seem to be only 3 general principles:

• The principle of indifference — the symmetry principle

• The maximum entropy principle

• Occam’s razor — the simplicity principle

Concrete: How shall we choose the hypothesis space {Hi} and their

prior p(Hi).
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Indifference or Symmetry Principle

Assign same probability to all hypotheses:

p(Hi) =
1
|I| for finite I

p(Hθ) = [Vol(Θ)]−1 for compact and measurable Θ.

⇒ p(Hi|D) ∝ p(D|Hi)
∧
= classical Hypothesis testing (Max.Likelihood).

Example: Hθ =Bernoulli(θ) with p(θ) = 1 for θ ∈ Θ := [0, 1].

Problems: Does not work for “large” hypothesis spaces:

(a) Uniform distr. on infinite I = N or noncompact Θ not possible!

(b) Reparametrization: θ ; f(θ). Uniform in θ is not uniform in f(θ).

Example: “Uniform” distr. on space of all (binary) sequences {0, 1}∞:

p(x1...xn) = ( 12 )
n ∀n∀x1...xn ⇒ p(xn+1 = 1|x1...xn) = 1

2 always!

Inference so not possible (No-Free-Lunch myth).

Predictive setting: All we need is p(x).
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Example: Bayes’ and Laplace’s Rule

Assume data is generated by a biased coin with head probability θ, i.e.

Hθ :=Bernoulli(θ) with θ ∈ Θ := [0, 1].

Finite sequence: x = x1x2...xn with n1 ones and n0 zeros.

Sample infinite sequence: ω ∈ Ω = {0, 1}∞

Basic event: Γx = {ω : ω1 = x1, ..., ωn = xn} = set of all sequences

starting with x.

Data likelihood: pθ(x) := p(Γx|Hθ) = θn1(1− θ)n0 .

Bayes (1763): Uniform prior plausibility: p(θ) := p(Hθ) = 1

(
∫ 1

0
p(θ) dθ = 1 instead

∑
i∈I p(Hi) = 1)

Evidence: p(x) =
∫ 1

0
pθ(x)p(θ) dθ =

∫ 1

0
θn1(1− θ)n0 dθ = n1!n0!

(n0+n1+1)!
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Example: Bayes’ and Laplace’s Rule

Bayes: Posterior plausibility of θ

after seeing x is:

p(θ|x) = p(x|θ)p(θ)
p(x)

=
(n+1)!

n1!n0!
θn1(1−θ)n0

.

Laplace: What is the probability of seeing 1 after having observed x?

p(xn+1 = 1|x1...xn) =
p(x1)

p(x)
=
n1+1

n+ 2

Laplace believed that the sun had risen for 5000 years = 1’826’213 days,

so he concluded that the probability of doomsday tomorrow is 1
1826215 .
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The Maximum Entropy Principle ...

... is based on the foundations of statistical physics.

... chooses among a class of distributions the one which has maximal

entropy.

The class is usually characterized by constraining the class of all

distributions.

... generalizes the symmetry principle.

... reduces to the symmetry principle in the special case of no

constraint.

... has same limitations as the symmetry principle.
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Occam’s Razor — The Simplicity Principle

• Only Occam’s razor (in combination with Epicurus’ principle) is

general enough to assign prior probabilities in every situation.

• The idea is to assign high (subjective) probability to simple events,

and low probability to complex events.

• Simple events (strings) are more plausible a priori than complex

ones.

• This gives (approximately) justice to both Occam’s razor and

Epicurus’ principle.

this prior will be quantified and discussed later
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3.5 Discussion: Contents

• Probability Jargon

• Applications

• Outlook

• Summary

• Exercises

• Literature
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Probability Jargon
Example: (Un)fair coin: Ω = {Tail,Head} ≃ {0, 1}. p(1) = θ ∈ [0, 1]:

Likelihood: p(1101|θ) = θ × θ × (1− θ)× θ

Maximum Likelihood (ML) estimate: θ̂ = argmaxθ p(1101|θ) = 3
4

Prior: If we are indifferent, then p(θ) =const.

Evidence: p(1101) =
∑

θ p(1101|θ)p(θ) =
1
20 (actually

∫
)

Posterior: p(θ|1101) = p(1101|θ)p(θ)
p(1101) ∝ θ3(1− θ) (BAYES RULE!).

Maximum a Posterior (MAP) estimate: θ̂ = argmaxθ p(θ|1101) = 3
4

Predictive distribution: p(1|1101) = p(11011)
p(1101) = 2

3

Expectation: E[f |...] =
∑

θ f(θ)p(θ|...), e.g. E[θ|1101] =
2
3

Variance: Var(θ) = E[(θ − Eθ)2|1101] = 2
63

Probability density: p(θ) = 1
εp([θ, θ + ε]) for ε→ 0
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Applications

• Bayesian dependency networks

• (Naive) Bayes classification

• Bayesian regression

• Model parameter estimation

• Probabilistic reasoning systems

• Pattern recognition

• ...
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Outlook

• Likelihood functions from the exponential family

(Gauss, Multinomial, Poisson, Dirichlet)

• Conjugate priors

• Approximations: Gaussian, Laplace, Gradient Descent, ...

• Monte Carlo simulations: Gibbs sampling, Metropolis-Hastings,

• Bayesian model comparison

• Consistency of Bayesian estimators
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Summary

• The aim of probability theory is to describe uncertainty.

• Frequency interpretation of probabilities is simple,

but is circular and limited to i.i.d.

• Distinguish between subjective and objective probabilities.

• Both kinds of probabilities satisfy Kolmogorov’s axioms.

• Use Bayes rule for getting posterior from prior probabilities.

• But where do the priors come from?

• Occam’s razor: Choose a simplicity biased prior.

• Still: What do objective probabilities really mean?
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Exercise 1 [C25] Envelope Paradox

• I offer you two closed envelopes, one of them contains twice the

amount of money than the other. You are allowed to pick one and

open it. Now you have two options. Keep the money or decide for

the other envelope (which could double or half your gain).

• Symmetry argument: It doesn’t matter whether you switch, the

expected gain is the same.

• Refutation: With probability p = 1/2, the other envelope contains

twice/half the amount, i.e. if you switch your expected gain

increases by a factor 1.25=1/2*2+1/2*1/2.

• Present a Bayesian solution.
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Exercise 2 [C15-45] Confirmation Paradox
(i) R→ B is confirmed by an R-instance with property B

(ii) ¬B → ¬R is confirmed by a ¬B-instance with property ¬R.
(iii) Since R→ B and ¬B → ¬R are logically equivalent,
R→ B is also confirmed by a ¬B-instance with property ¬R.

Example: Hypothesis (o): All ravens are black (R=Raven, B=Black).

(i) observing a Black Raven confirms Hypothesis (o).

(iii) observing a White Sock also confirms that all Ravens are Black,
since a White Sock is a non-Raven which is non-Black.

This conclusion sounds absurd.

Present a Bayesian solution.
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More Exercises

3. [C15] Conditional probabilities: Show that p(·|A) (as a function of

the first argument) also satisfies the Kolmogorov axioms, if p(·)
does.

4. [C20] Prove Bayes rule (Theorem 3.6).

5. [C05] Assume the prevalence of a certain disease in the general

population is 1%. Assume some test on a diseased/healthy person

is positive/negative with 99% probability. If the test is positive,

what is the chance of having the disease?

6. [C20] Compute
∫ 1

0
θn(1− θ)m dθ (without looking it up)
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4 ALGORITHMIC PROBABILITY &

UNIVERSAL INDUCTION

• The Universal a Priori Probability M

• Universal Sequence Prediction

• Universal Inductive Inference

• Martin-Löf Randomness

• Discussion
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Algorithmic Probability &
Universal Induction: Abstract

Solomonoff completed the Bayesian framework by providing a rigorous,

unique, formal, and universal choice for the model class and the prior. I

will discuss in breadth how and in which sense universal (non-i.i.d.)

sequence prediction solves various (philosophical) problems of traditional

Bayesian sequence prediction. I show that Solomonoff’s model possesses

many desirable properties: Strong total and weak instantaneous bounds

, and in contrast to most classical continuous prior densities has no zero

p(oste)rior problem, i.e. can confirm universal hypotheses, is

reparametrization and regrouping invariant, and avoids the old-evidence

and updating problem. It even performs well (actually better) in

non-computable environments.
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Problem Setup

• Since our primary purpose for doing induction is to forecast

(time-series), we will concentrate on sequence prediction tasks.

• Classification is a special case of sequence prediction.

(With some tricks the other direction is also true)

• This Course focusses on maximizing profit (minimizing loss).

We’re not (primarily) interested in finding a (true/predictive/causal)

model.

• Separating noise from data is not necessary in this setting!
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Philosophy & Notation

Occam’s razor: take simplest hy-

pothesis consistent with data.

Epicurus’ principle of multiple ex-

planations: Keep all theories con-

sistent with the data.

⇓ ⇓
We now combine both principles:

Take all consistent explanations into account,

but weight the simpler ones higher.

Formalization with Turing machines and Kolmogorov complexity

Additional notation: We denote binary strings of length ℓ(x) = n by

x = x1:n = x1x2...xn with xt ∈ B and further abbreviate

x<n := x1...xn−1.
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4.1 The Universal a Priori Probability

M : Contents

• The Universal a Priori Probability M

• Relations between Complexities

• (Semi)Measures

• Sample Space / σ-Algebra / Cylinder Sets

• M is a SemiMeasure

• Properties of Enumerable Semimeasures

• Fundamental Universality Property of M
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The Universal a Priori Probability M

Solomonoff defined the universal probability distribution M(x) as the

probability that the output of a universal monotone Turing machine

starts with x when provided with fair coin flips on the input tape.

Definition 4.1 (Solomonoff distribution) Formally,

M(x) :=
∑

p : U(p)=x∗

2−ℓ(p)

The sum is over minimal programs p for which U outputs a string

starting with x (see Definition 2.6).

Since the shortest programs p dominate the sum, M(x) is roughly

2−Km(x). More precisely ...
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Relations between Complexities

Theorem 4.2 (Relations between Complexities)

KM := −logM , Km, and K are ordered in the following way:

0 ≤ K(x|ℓ(x))
+
< KM(x) ≤ Km(x) ≤ K(x)

+
< ℓ(x) + 2logℓ(x)

Proof sketch:

The second inequality follows from the fact that,

given n and Kraft’s inequality
∑

x∈Xn M(x) ≤ 1,

there exists for x ∈ Xn a Shannon-Fano code of length −logM(x),

which is effective since M is enumerable.

Now use Theorem 2.17 conditioned to n.

The other inequalities are obvious from the definitions.
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(Semi)Measures

Before we can discuss the stochastic properties of M we need the

concept of (semi)measures for strings.

Definition 4.3 ((Semi)measures) ρ(x) denotes the probability

that a binary sequence starts with string x. We call ρ ≥ 0 a

semimeasure if ρ(ϵ) ≤ 1 and ρ(x) ≥ ρ(x0) + ρ(x1), and a proba-

bility measure if equality holds.

The reason for calling ρ with the above property a probability measure is

that it satisfies Kolmogorov’s Axioms Definition 3.1 of probability in the

following sense ...
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Sample Space / Events / Cylinder Sets

• The The sample space is Ω = B∞ with elements

ω = ω1ω2ω3... ∈ B∞ being infinite binary sequences.

• The set of events (the σ-algebra) is defined as the set generated

from the cylinder sets Γx1:n := {ω : ω1:n = x1:n} by countable

union and complement.

• A probability measure ρ is uniquely defined by giving its values

ρ(Γx1:n) on the cylinder sets, which we abbreviate by ρ(x1:n).

• We will also call ρ a measure, or even more loosely a probability

distribution.
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M is a SemiMeasure

• The reason for extending the definition to semimeasures is that

M itself is unfortunately not a probability measure.

• We have M(x0) +M(x1) < M(x) because there are programs p,

which output x, neither followed by 0 nor 1.

• They just stop after printing x -or-

continue forever without any further output.

• Since M(ϵ) = 1, M is at least a semimeasure.
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Properties of (Semi)Measure ρ

• Properties of ρ:
∑

x1:n∈Xn

ρ(x1:n)
(<)
= 1,

ρ(xt|x<t) := ρ(x1:t)/ρ(x<t),

ρ(x1...xn) = ρ(x1)·ρ(x2|x1)·...·ρ(xn|x1...xn−1).

• One can show that ρ is an enumerable semimeasure

⇐⇒ ∃ mTM T : ρ(x) =
∑

p : T (p)=x∗

2−ℓ(p) and ℓ(T )
+
= K(ρ)

• Intuition: Fair coin flips are sufficient to create any probability

distribution.

• Definition: K(ρ) := length of shortest self-delimiting code of a

Turing machine computing function ρ in the sense of Def. 2.21.
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Fundamental Universality Property of M

Theorem 4.4 (Universality of M)

M is a universal semimeasure in the sense that

M(x)
×
> 2−K(ρ) · ρ(x) for all enumerable semimeasures ρ.

M is enumerable, but not estimable.

Up to a multiplicative constant, M assigns higher probability to all x

than any other computable probability distribution.

Proof sketch:

M(x) =
∑

p : U(p)=x∗

2−ℓ(p) ≥
∑

q : U(Tq)=x∗

2−ℓ(Tq) = 2−ℓ(T )
∑

q : T (q)=x∗

2−ℓ(q) ×
= 2−K(ρ)ρ(x)
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4.2 Universal Sequence Prediction:

Contents

• Solomonoff, Occam, Epicurus

• Prediction

• Simple Deterministic Bound

• Solomonoff’s Major Result

• Implications of Solomonoff’s Result

• Entropy Inequality

• Proof of the Entropy Bound
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Solomonoff, Occam, Epicurus

• In which sense does M incorporate Occam’s razor and Epicurus’

principle of multiple explanations?

• From M(x) ≈ 2−K(x) we see that M assigns high probability to

simple strings (Occam).

• More useful is to think of x as being the observed history.

• We see from Definition 4.1 that every program p consistent with

history x is allowed to contribute to M (Epicurus).

• On the other hand, shorter programs give significantly larger

contribution (Occam).
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Prediction

How does all this affect prediction?

If M(x) correctly describes our (subjective) prior belief in x, then

M(y|x) :=M(xy)/M(x)

must be our posterior belief in y.

From the symmetry of algorithmic information

K(x, y)
+
= K(y|x,K(x)) +K(x) (Theorem 2.15), and assuming

K(x, y) ≈ K(xy), and approximating K(y|x,K(x)) ≈ K(y|x),
M(x) ≈ 2−K(x), and M(xy) ≈ 2−K(xy) we get:

M(y|x) ≈ 2−K(y|x)

This tells us that M predicts y with high probability iff y has an easy

explanation, given x (Occam & Epicurus).
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Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation xt ∈ B of

a given sequence x1...xt−1. Simple deterministic bound:
∞∑
t=1

|1−M(xt|x<t)|
a
≤ −

∞∑
t=1

lnM(xt|x<t)
b
= − lnM(x1:∞)

c
≤ Km(x1:∞) ln 2

(a) use |1− a| ≤ − ln a for 0 ≤ a ≤ 1.

(b) exchange sum with logarithm and eliminate product by chain rule.

(c) used Theorem 4.2.

If x1:∞ is a computable sequence, then Km(x1:∞) is finite,

which implies M(xt|x<t) → 1 (
∑∞

t=1 |1− at| <∞ ⇒ at → 1).

⇒ if the environment is a computable sequence (digits of π or e or ...),

after having seen the first few digits, M correctly predicts the next digit

with high probability, i.e. it recognizes the structure of the sequence.
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Solomonoff’s Major Result
Assume sequence x1:∞ is sampled from the unknown distribution µ,
i.e. the true objective probability of x1:n is µ(x1:n).

The probability of xt given x<t hence is µ(xt|x<t) = µ(x1:t)/µ(x<t).

Solomonoff’s central result [Hut05] is that M converges to µ.

More precisely, he showed that

Theorem 4.5 (Predictive Convergence of M)
∞∑
t=1

∑
x<t∈Bt−1

µ(x<t)
(
M(0|x<t)− µ(0|x<t)

)2 +
< 1

2 ln 2·K(µ) < ∞
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Implications of Solomonoff’s Result
• The infinite sum can only be finite if the difference
M(0|x<t)− µ(0|x<t) tends to zero for t→ ∞ with µ-probability 1.

• Convergence is rapid: The expected number of times t in which
|M(0|x<t)− µ(0|x<t)| > ε is finite and bounded by c/ε2 and
the probability that the number of ε-deviations exceeds c

ε2δ is
smaller than δ, where c

+
= ln 2·K(µ).

• No statement is possible for which t these deviations occur.

• This holds for any computable probability distribution µ.

• How does M know to which µ?
The set of µ-random sequences differ for different µ.

• Intuition: Past data x<t are exploited to get a (with t→ ∞)
improving estimate M(xt|x<t) of µ(xt|x<t).

• Fazit: M is universal predictor. The only assumption made is that
data are generated from a computable distribution.
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Entropy Inequality

Proof of Solomonoff’s bound: We need (proof as exercise)

Lemma 4.6 (Entropy Inequality)

2(z − y)2 ≤ y ln y
z + (1− y) ln 1−y

1−z for 0 < z < 1 and 0 ≤ y ≤ 1.

≤ y ln y
z +(1− y) ln 1−y

c−z for 0 < z < c ≤ 1 and 0 ≤ y ≤ 1.

The latter inequality holds, since the r.h.s. is decreasing in c. Inserting

0 ≤ y := µ(0|x<t) = 1− µ(1|x<t) ≤ 1 and

0 < z :=M(0|x<t) < c :=M(0|x<t) +M(1|x<t) < 1 we get

2(M(0|x<t)− µ(0|x<t))
2 ≤

∑
xt∈B

µ(xt|x<t) ln
µ(xt|x<t)

M(xt|x<t)
=: dt(x<t)

The r.h.s. is the relative entropy between µ and M .
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Proof of the Entropy Bound
Dn(µ||M) ≡

n∑
t=1

∑
x<t

µ(x<t)·dt(x<t)
(a)
=

n∑
t=1

∑
x1:t

µ(x1:t) ln
µ(xt|x<t)

M(xt|x<t)
=

(b)
=

∑
x1:n

µ(x1:n) ln
n∏

t=1

µ(xt|x<t)

M(xt|x<t)

(c)
=

∑
x1:n

µ(x1:n) ln
µ(x1:n)

M(x1:n)

(d)
+
< K(µ) ln 2

(a) Insert def. of dt and use product rule µ(x<t)·µ(xt|x<t)=µ(x1:t).

(b)
∑

x1:t
µ(x1:t) =

∑
x1:n

µ(x1:n) and argument of log is independent

of xt+1:n. The t sum can now be exchanged with the x1:n sum and

transforms to a product inside the logarithm.

(c) Use chain rule again for µ and M .

(d) Use dominance M(x)
×
> 2−K(µ)µ(x).

Inserting dt into Dn yields Solomonoff’s Theorem 4.5.
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4.3 Universal Inductive Inference:

Contents

• Bayesian Sequence Prediction and Confirmation

• The Universal Prior

• The Problem of Zero Prior

• Reparametrization and Regrouping Invariance

• Universal Choice of Class M

• The Problem of Old Evidence / New Theories

• Universal is Better than Continuous M

• More Bounds / Critique / Problems
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Bayesian Sequence Prediction and Confirmation
• Assumption: Sequence ω ∈ X∞ is sampled from the “true”
probability measure µ, i.e. µ(x) := P[x|µ] is the µ-probability that
ω starts with x ∈ Xn.

• Model class: We assume that µ is unknown but known to belong to
a countable class of environments=models=measures
M = {ν1, ν2, ...}. [no i.i.d./ergodic/stationary assumption]

• Hypothesis class: {Hν : ν ∈ M} forms a mutually exclusive and
complete class of hypotheses.

• Prior: wν := P[Hν ] is our prior belief in Hν

⇒ Evidence: ξ(x) := P[x] =
∑

ν∈M P[x|Hν ]P[Hν ] =
∑

ν wνν(x)

must be our (prior) belief in x.

⇒ Posterior: wν(x) := P[Hν |x] = P[x|Hν ]P[Hν ]
P[x] is our posterior belief

in ν (Bayes’ rule).
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The Universal Prior
• Quantify the complexity of an environment ν or hypothesis Hν by
its Kolmogorov complexity K(ν).

• Universal prior: wν = wU
ν := 2−K(ν) is a decreasing function in

the model’s complexity, and sums to (less than) one.

⇒ Dn(µ||ξ) ≤ K(µ) ln 2, i.e. the number of ε-deviations of ξ from µ
is proportional to the complexity of the environment.

• No other semi-computable prior leads to better prediction (bounds).

• For continuous M, we can assign a (proper) universal prior (not

density) wU
θ = 2−K(θ) > 0 for computable θ, and 0 for uncomp. θ.

• This effectively reduces M to a discrete class {νθ ∈ M : wU
θ > 0}

which is typically dense in M.

• This prior has many advantages over the classical prior (densities).
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The Problem of Zero Prior
= the problem of confirmation of universal hypotheses

Problem: If the prior is zero, then the posterior is necessarily also zero.

Example: Consider the hypothesis H = H1 that all balls in some urn or

all ravens are black (=1) or that the sun rises every day.

Starting with a prior density as w(θ) = 1 implies that prior P[Hθ] = 0

for all θ, hence posterior P [Hθ|1..1] = 0, hence H never gets confirmed.

3 non-solutions: define H = {ω = 1∞} | use finite population | abandon
strict/logical/all-quantified/universal hypotheses in favor of soft hyp.

Solution: Assign non-zero prior to θ = 1 ⇒ P[H|1n] → 1.

Generalization: Assign non-zero prior to all “special” θ, like 1
2 and 1

6 ,

which may naturally appear in a hypothesis, like “is the coin or die fair”.

Universal solution: Assign non-zero prior to all comp. θ, e.g. wU
θ = 2−K(θ)
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Reparametrization Invariance

• New parametrization e.g. ψ =
√
θ, then the ψ-density

w̃(ψ) = 2
√
θ w(θ) is no longer uniform if w(θ) = 1 is uniform

⇒ indifference principle is not reparametrization invariant (RIP).

• Jeffrey’s and Bernardo’s principle satisfy RIP w.r.t. differentiable

bijective transformations ψ = f−1(θ).

• The universal prior wU
θ = 2−K(θ) also satisfies RIP w.r.t. simple

computable f . (within a multiplicative constant)
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Regrouping Invariance

• Non-bijective transformations:

E.g. grouping ball colors into categories black/non-black.

• No classical principle is regrouping invariant.

• Regrouping invariance is regarded as a very important and desirable

property. [Walley’s (1996) solution: sets of priors]

• The universal prior wU
θ = 2−K(θ) is invariant under regrouping, and

more generally under all simple [computable with complexity O(1)]

even non-bijective transformations. (within a multiplicative constant)

• Note: Reparametrization and regrouping invariance hold for

arbitrary classes and are not limited to the i.i.d. case.
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Universal Choice of Class M
• The larger M the less restrictive is the assumption µ ∈ M.

• The class MU of all (semi)computable (semi)measures, although

only countable, is pretty large, since it includes all valid physics

theories. Further, ξU is itself semi-computable [ZL70].

• Solomonoff’s universal prior M(x) := probability that the output of

a universal TM U with random input starts with x.

• Formally: M(x) :=
∑

p : U(p)=x∗ 2
−ℓ(p) where the sum is over all

(minimal) programs p for which U outputs a string starting with x.

• M may be regarded as a 2−ℓ(p)-weighted mixture over all

deterministic environments νp. (νp(x) = 1 if U(p) = x∗ and 0 else)

• M(x) coincides with ξU (x) within an irrelevant multiplicative constant.
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The Problem of Old Evidence / New Theories

• What if some evidence E=̂x (e.g. Mercury’s perihelion advance) is

known well-before the correct hypothesis/theory/model H=̂µ

(Einstein’s general relativity theory) is found?

• How shall H be added to the Bayesian machinery a posteriori?

• What should the “prior” of H be?

• Should it be the belief in H in a hypothetical counterfactual world

in which E is not known?

• Can old evidence E confirm H?

• After all, H could simply be constructed/biased/fitted towards

“explaining” E.
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Solution of the Old-Evidence Problem

• The universal class MU and universal prior wU
ν formally solves this

problem.

• The universal prior of H is 2−K(H) independent of M and of

whether E is known or not.

• Updating M is unproblematic, and even not necessary when

starting with MU , since it includes all hypothesis (including yet

unknown or unnamed ones) a priori.
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Universal is Better than Continuous M
• Although νθ() and wθ are incomp. for cont. classes M for most θ,

ξ() is typically computable. (exactly as for Laplace or numerically)

⇒ Dn(µ||M)
+
< Dn(µ||ξ)+K(ξ) ln 2 for all µ

• That is, M is superior to all computable mixture predictors ξ based

on any (continuous or discrete) model class M and weight w(θ),

save an additive constant K(ξ) ln 2 = O(1), even if environment µ

is not computable.

• While Dn(µ||ξ) ∼ d
2 lnn for all µ ∈ M,

Dn(µ||M) ≤ K(µ) ln 2 is even finite for computable µ.

Fazit: Solomonoff prediction works also in non-computable environments



Algorithmic Probability & Universal Induction - 164 - Marcus Hutter

Convergence and Bounds
• Total (loss) bounds:

∑∞
n=1 E[hn]

+
< K(µ) ln 2, where

ht(ω<t) :=
∑

a∈X (
√
ξ(a|ω<t)−

√
µ(a|ω<t))

2.

• Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete,
and universal prior, respectively:

E[hn]
×
< 1

n lnw(µ)−1 and E[hn]
×
< 1

n lnw−1
µ = 1

nK(µ) ln 2.

• Bounds for computable environments: Rapidly M(xt|x<t) → 1 on
every computable sequence x1:∞ (whichsoever, e.g. 1∞ or the digits
of π or e), i.e. M quickly recognizes the structure of the sequence.

• Weak instantaneous bounds: valid for all n and x1:n and x̄n ̸= xn:
2−K(n)

×
< M(x̄n|x<n)

×
< 22Km(x1:n)−K(n)

• Magic instance numbers: e.g. M(0|1n) ×
= 2−K(n) → 0, but spikes

up for simple n. M is cautious at magic instance numbers n.

• Future bounds / errors to come: If our past observations ω1:n

contain a lot of information about µ, we make few errors in future:∑∞
t=n+1 E[ht|ω1:n]

+
< [K(µ|ω1:n)+K(n)] ln 2
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More Stuff / Critique / Problems

• Prior knowledge y can be incorporated by using “subjective” prior

wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often

(but not always) harmless.

• Incomputability: K and M can serve as “gold standards” which

practitioners should aim at, but have to be (crudely) approximated

in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW

[WST95], NCD [CV05]).
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4.4 Martin-Löf Randomness: Contents

• When is a Sequence Random? If it is incompressible!

• Motivation: For a fair coin 00000000 is as likely as 01100101,

but we “feel” that 00000000 is less random than 01100101.

• Martin-Löf randomness captures the important concept of

randomness of individual sequences.

• Martin-Löf random sequences pass all effective randomness tests.
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When is a Sequence Random?

a) Is 0110010100101101101001111011 generated by a fair coin flip?

b) Is 1111111111111111111111111111 generated by a fair coin flip?

c) Is 1100100100001111110110101010 generated by a fair coin flip?

d) Is 0101010101010101010101010101 generated by a fair coin flip?

• Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.

• Problem: Formally (a-d) have equal probability ( 12 )
length.

• Classical solution: Consider hypothesis class H := {Bernoulli(p) :
p ∈ Θ ⊆ [0, 1]} and determine p for which sequence has maximum

likelihood =⇒ (a,c,d) are fair Bernoulli( 12 ) coins, (b) not.

• Problem: (d) is non-random, also (c) is binary expansion of π.

• Solution: Choose H larger, but how large? Overfitting? MDL?

• AIT Solution: A sequence is random iff it is incompressible.
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Martin-Löf Random Sequences

Characterization equivalent to Martin-Löf’s original definition:

Theorem 4.7 (Martin-Löf random sequences)

A sequence x1:∞ is µ-random (in the sense of Martin-Löf)

⇐⇒ there is a constant c such that M(x1:n) ≤ c · µ(x1:n) for all n.

Equivalent formulation for computable µ:

x1:∞ is µ.M.L.-random ⇐⇒ Km(x1:n)
+
= −logµ(x1:n) ∀n, (4.8)

Theorem 4.7 follows from (4.8) by exponentiation, “using 2−Km ≈M”

and noting that M
×
> µ follows from universality of M .
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Properties of ML-Random Sequences

• Special case of µ being a fair coin, i.e. µ(x1:n) = 2−n, then

x1:∞ is random ⇐⇒ Km(x1:n)
+
= n, i.e. iff x1:n is incompressible.

• For general µ, −logµ(x1:n) is the length of the Arithmetic code of

x1:n, hence x1:∞ is µ-random ⇐⇒ the Arithmetic code is optimal.

• One can show that a µ-random sequence x1:∞ passes all thinkable

effective randomness tests, e.g. the law of large numbers, the law of

the iterated logarithm, etc.

• In particular, the set of all µ-random sequences has µ-measure 1.
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4.5 Discussion: Contents

• Limitations of Other Approaches

• Summary

• Exercises

• Literature
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Limitations of Other Approaches 1

• Popper’s philosophy of science is seriously flawed:

– falsificationism is too limited,

– corroboration ≡ confirmation or meaningless,

– simple ̸= easy-to-refute.

• No free lunch myth relies on unrealistic uniform sampling.

Universal sampling permits free lunch.

• Frequentism: definition circular,

limited to i.i.d. data, reference class problem.

• Statistical Learning Theory: Predominantly considers i.i.d. data:

Empirical Risk Minimization, PAC bounds, VC-dimension,

Rademacher complexity, Cross-Validation.
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Limitations of Other Approaches 2
• Subjective Bayes: No formal procedure/theory to get prior.

• Objective Bayes: Right in spirit, but limited to small classes
unless community embraces information theory.

• MDL/MML: practical approximations of universal induction.

• Pluralism is globally inconsistent.

• Deductive Logic: Not strong enough to allow for induction.

• Non-monotonic reasoning, inductive logic, default reasoning
do not properly take uncertainty into account.

• Carnap’s confirmation theory: Only for exchangeable data.
Cannot confirm universal hypotheses.

• Data paradigm: Data may be more important than algorithms for
“simple” problems, but a “lookup-table” AGI will not work.

• Eliminative induction ignores uncertainty and information theory.
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Summary
• Solomonoff’s universal a priori probability M(x)

= Occam + Epicurus + Turing + Bayes + Kolmogorov

= output probability of a universal TM with random input

= enum. semimeasure that dominates all enum. semimeasures

≈ 2−Kolmogorov complexity(x)

• M(xt|x<t) → µ(xt|x<t) rapid w.p.1 ∀ computable µ.

• M solves/avoids/meliorates many if not all philosophical and

statistical problems around induction.

• Fazit: M is universal predictor.

• Matin-Löf /Kolmogorov define randomness of individual sequences:

A sequence is random iff it is incompressible.
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Exercises

1. [C10] Show that Definition 4.1 of M and the one given above it are

equivalent.

2. [C30] Prove that ρ is an enumerable semimeasure if and only if

there exists a TM T with ρ(x) =
∑

p:T (p)=x∗ 2
−ℓ(p) ∀x.

3. [C10] Prove the bounds of Theorem 4.2

4. [C15] Prove the entropy inequality Lemma 4.6.

Hint: Differentiate w.r.t. z and consider y < z and y > z separately.

5. [C10] Prove the claim about (rapid) convergence after Theorem 4.5

(Hint: Markov-Inequality).

6. [C20] Prove the instantaneous bound M(1|0n) ×
= 2−K(n).
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5 MINIMUM DESCRIPTION LENGTH

• MDL as Approximation of Solomonoff’s M

• The Minimum Description Length Principle

• Application: Sequence Prediction

• Application: Regression / Polynomial Fitting

• Summary
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Minimum Description Length: Abstract

The Minimum Description/Message Length principle is one of the most

important concepts in Machine Learning, and serves as a scientific

guide, in general. The motivation is as follows: To make predictions

involves finding regularities in past data, regularities in data allows for

compression, hence short descriptions of data should help in making

predictions. In this lecture series we approach MDL from a Bayesian

perspective and relate it to a MAP (maximum a posteriori) model

choice. The Bayesian prior is chosen in accordance with Occam and

Epicurus and the posterior is approximated by the MAP solution. We

reconsider (un)fair coin flips and compare the M(D)L to Bayes-Laplace’s

solution, and similarly for general sequence prediction tasks. Finally I

present an application to regression / polynomial fitting.
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From Compression to Prediction

The better you can compress, the better you can predict.

Being able to predict (the env.) well is key for being able to act well.

Simple Example: Consider “14159...[990 more digits]...01989”.

• If it looks random to you, you can neither compress it

nor can you predict the 1001st digit.

• If you realize that they are the first 1000 digits of π,

you can compress the sequence and predict the next digit.

Practical Example: The quality of natural language models is typically

judged by its perplexity, which is essentially a compression ratio.

Later: Sequential decision theory tells you how to exploit such models

for optimal rational actions.
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MDL as Approximation of Solomonoff’s M

• Approximation of Solomonoff, since M incomputable:

• M(x) ≈ 2−Km(x) (excellent approximation)

• Km(x) ≡ KmU (x) ≈ KmT (x)

(approximation quality depends on T and x)

• Predict y of highest M(y|x) is approximately same as

• MDL: Predict y of smallest complexity KmT (xy).

• Examples for x: Daily weather or stock market data.

• Example for T : Lempel-Ziv decompressor.

• Prediction =̂ finding regularities =̂ compression =̂ MDL.

• Improved compressors lead to improved predictors.
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Human Knowledge Compression Contest
• compression = finding regularities ⇒ prediction ≈ intelligence

[hard file size numbers] [slippery concept]

• Many researchers analyze data and find compact models.

• Compressors beating the current compressors need to be smart(er).

• “universal” corpus of data ⇒ “universally” smart compressors.

• Wikipedia seems a good snapshot of the Human World Knowledge.

• The ultimate compressor of Wikipedia will “understand”
all human knowledge, i.e. be really smart.

• Contest: Compress Wikipedia
better than the current record.

• Prize: 50’000 Euro × the relative
improvement to previous record. [http://prize.hutter1.net]
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The Minimum Description Length Principle
Identification of probabilistic model “best” describing data:

Probabilistic model(=hypothesis) Hν with ν ∈ M and data D.

Most probable model is νMDL = argmaxν∈M p(Hν |D).

Bayes’ rule: p(Hν |D) = p(D|Hν)·p(Hν)/p(D).

Occam’s razor: p(Hν) = 2−Kw(ν).

By definition: p(D|Hν) = ν(x), D = x =data-seq., p(D) =const.

Take logarithm:

Definition 5.1 (MDL) νMDL = arg min
ν∈M

{Kν(x) +Kw(ν)}

Kν(x) := −log ν(x) = length of Shannon-Fano code of x given Hν .

Kw(ν) = length of model Hν .

Names: Two-part MDL or MAP or MML (∃ “slight” differences)
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Predict with Best Model

• Use best model from class of models M for prediction:

• Predict y with probability νMDL(y|x) = νMDL(xy)
νMDL(x)

(3 variants)

• yMDL = argmax
y

{νMDL(y|x)} is most likely continuation of x

• Special case: Kw(ν) =const.

=⇒ MDL ; ML:=Maximum likelihood principle.

• Example: Hθ =Bernoulli(θ) with θ ∈ [0, 1] and Kw(θ) :=const. and

ν(x1:n) = θn1(1− θ)n0 with n1 = x1 + ...+ xn = n− n0.

⇒ θMDL = argmin
θ

{−logθn1(1−θ)n0+Kw(θ)} =
n1
n

= νMDL(1|x)
= ML frequency estimate. (overconfident, e.g. n1 = 0)

• Compare with Laplace’ rule based on Bayes’ rule: θLaplace = n1+1
n+2 .
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Application: Sequence Prediction

Instead of Bayes mixture ξ(x) =
∑

ν wνν(x), consider MAP/MDL

νMDL(x) = max{wνν(x) : ν ∈ M} = arg min
ν∈M

{Kν(x) +Kw(ν)}.

Theorem 5.2 (MDL bound)
∞∑
t=1

E
[∑

xt

(µ(xt|x<t)− νMDL(xt|x<t))
2
]
≤ 8w−1

µ

No log as for ξ wµ=̂2−K(µ) Proof: [PH05]

⇒ MDL converges, but speed can be exp. worse than Bayes&Solomonoff

⇒ be careful (bound is tight).

For continuous smooth model class M and prior wν ,

MDL is as good as Bayes.
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Application: Regression / Polynomial Fitting
• Data D = {(x1, y1), ..., (xn, yn)}

• Fit polynomial fd(x) := a0 + a1x+ a2x
2 + ...+ adx

d of degree d
through points D

• Measure of error: SQ(a0...ad) =
∑n

i=1(yi − fd(xi))
2

• Given d, minimize SQ(a0:d) w.r.t. parameters a0...ad.

• This classical approach does
not tell us how to choose d?
(d ≥ n− 1 gives perfect fit)
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MDL Solution to Polynomial Fitting
Assume y given x is Gaussian with variance σ2 and mean fd(x), i.e.

P ((x, y)|fd) := P (y|x, fd) =
1√
2πσ

exp(− (y − fd(x))
2

2σ2
)

=⇒ P (D|fd) =
d∏

i=1

P ((xi, yi)|fd) =
e−SQ(a0:d)/2σ

2

(2πσ2)n/2

The larger the error SQ, the less likely the data.

Occam: P (fd) = 2−Kw(fd). Simple coding: Kw(fd) ≈ (d+ 1)·C, where
C is the description length=accuracy of each coefficient ak in bits =⇒

fMDL = argmin
f

{−logP (D|f)+Kw(f)} = argmin
d,a0:d

{SQ(a0:d)

2σ2 ln 2
+(d+1)C

}
Fixed d ⇒ aML

0:d = argmin
a0:d

SQ(a0:d) = classical solution

(by linear invariance of argmin)
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MDL Polynomial Fitting: Determine Degree d

Determine d (minf = mind minfd):

d = argmin
d

{ 1

2σ2 ln 2
SQ(aML

0:d)︸ ︷︷ ︸
least square fit

+
n

2
log(2πσ2)︸ ︷︷ ︸
“constant”

+ (d+ 1)C︸ ︷︷ ︸
complexity penalty

}

Interpretation: Tradeoff between SQuare error and complexity penalty

Minimization w.r.t. σ leads to nσ2 = SQ(d) := SQ(aML
0:d), hence

d = argmind{n
2 lnSQ(d) + (d+ 1)C}.

With subtle arguments one can derive C
+
= 1

2 lnn.

Numerically find minimum of r.h.s.
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Minimum Description Length: Summary

• Probability axioms give no guidance of how to choose the prior.

• Occam’s razor is the only general (always applicable) principle for

determining priors, especially in complex domains typical for AI.

• Prior = 2−descr.length — Universal prior = 2−Kolmogorov complexity.

• Prediction =̂ finding regularities =̂ compression =̂ MDL.

• MDL principle: from a model class, a model is chosen that:

minimizes the joint description length of the model and

the data observed so far given the model.

• Similar to (Bayesian) Maximum a Posteriori (MAP) principle.

• MDL often as good as Bayes but not always.
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Exercises

1. [C15] Determine an explicit expression for the aML
0:d estimates.

2. [C25] Use some artificial data by sampling from a polynomial with

Gaussian or other noise. Use the MDL estimator to fit polynomials

through the data points. Is the poly-degree correctly estimated?

3. [C20] Derive similar M(D)L estimators for other function classes like

fourier decompositions. Use C = 1
2 lnn also for them.

4. [C25] Search for some real data. If other regression curves are

available, compare them with your MDL results.
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6 THE UNIVERSAL SIMILARITY METRIC

• Kolmogorov Complexity

• The Universal Similarity Metric

• Tree-Based Clustering

• Genomics & Phylogeny: Mammals, SARS Virus & Others

• Classification of Different File Types

• Language Tree (Re)construction

• Classify Music w.r.t. Composer

• Further Applications

• Summary
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The Similarity Metric: Abstract

The MDL method has been studied from very concrete and highly tuned

practical applications to general theoretical assertions. Sequence

prediction is just one application of MDL. The MDL idea has also been

used to define the so called information distance or universal similarity

metric, measuring the similarity between two individual objects. I will

present some very impressive recent clustering applications based on

standard Lempel-Ziv or bzip2 compression, including a completely

automatic reconstruction (a) of the evolutionary tree of 24 mammals

based on complete mtDNA, and (b) of the classification tree of 52

languages based on the declaration of human rights and (c) others.

Based on [Cilibrasi&Vitanyi’05]
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Kolmogorov Complexity

Question: When is object=string x similar to object=string y?

Universal solution: x similar y ⇔ x can be easily (re)constructed from y

⇔ Kolmogorov complexity K(x|y) := min{ℓ(p) : U(p, y) = x} is small

Examples:

1) x is very similar to itself (K(x|x) +
= 0)

2) A processed x is similar to x (K(f(x)|x) +
= 0 if K(f) = O(1)).

e.g. doubling, reverting, inverting, encrypting, partially deleting x.

3) A random string is with high probability not similar to any other

string (K(random|y) =length(random)).

The problem with K(x|y) as similarity=distance measure is that it is

neither symmetric nor normalized nor computable.
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The Universal Similarity Metric

• Symmetrization and normalization leads to a/the universal metric d:

0 ≤ d(x, y) :=
max{K(x|y),K(y|x)}−K(x|x)

max{K(x),K(y)}
≤ 1

• Every effective similarity between x and y is detected by d

• Use K(x|y)≈K(xy)−K(y) (coding T) and K(x)≡KU (x)≈KT (x)

=⇒ computable approximation: Normalized compression distance:

d(x, y) ≈ KT (xy)−min{KT (x),KT (y)}
max{KT (x),KT (y)}

. 1

• For T choose Lempel-Ziv or gzip or bzip(2) (de)compressor in the

applications below.

• Theory: Lempel-Ziv compresses asymptotically better than any

probabilistic finite state automaton predictor/compressor.
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Tree-Based Clustering

• If many objects x1, ..., xn need to be compared, determine the

similarity matrix Mij= d(xi, xj) for 1 ≤ i, j ≤ n

• Now cluster similar objects.

• There are various clustering techniques.

• Tree-based clustering: Create a tree connecting similar objects,

• e.g. quartet method (for clustering)
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Genomics & Phylogeny: Mammals

Let x1, ..., xn be mitochondrial genome sequences of different mammals:

Partial distance matrix Mij using bzip2(?)

Cat Echidna Gorilla ...

BrownBear Chimpanzee FinWhale HouseMouse ...

Carp Cow Gibbon Human ...

BrownBear 0.002 0.943 0.887 0.935 0.906 0.944 0.915 0.939 0.940 0.934 0.930 ...

Carp 0.943 0.006 0.946 0.954 0.947 0.955 0.952 0.951 0.957 0.956 0.946 ...

Cat 0.887 0.946 0.003 0.926 0.897 0.942 0.905 0.928 0.931 0.919 0.922 ...

Chimpanzee 0.935 0.954 0.926 0.006 0.926 0.948 0.926 0.849 0.731 0.943 0.667 ...

Cow 0.906 0.947 0.897 0.926 0.006 0.936 0.885 0.931 0.927 0.925 0.920 ...

Echidna 0.944 0.955 0.942 0.948 0.936 0.005 0.936 0.947 0.947 0.941 0.939 ...

FinbackWhale 0.915 0.952 0.905 0.926 0.885 0.936 0.005 0.930 0.931 0.933 0.922 ...

Gibbon 0.939 0.951 0.928 0.849 0.931 0.947 0.930 0.005 0.859 0.948 0.844 ...

Gorilla 0.940 0.957 0.931 0.731 0.927 0.947 0.931 0.859 0.006 0.944 0.737 ...

HouseMouse 0.934 0.956 0.919 0.943 0.925 0.941 0.933 0.948 0.944 0.006 0.932 ...

Human 0.930 0.946 0.922 0.667 0.920 0.939 0.922 0.844 0.737 0.932 0.005 ...

... ... ... ... ... ... ... ... ... ... ... ... ...
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Genomics & Phylogeny: Mammals
Evolutionary tree built from complete mammalian mtDNA of 24 species:

Carp
Cow

BlueWhale
FinbackWhale

Cat
BrownBear
PolarBear
GreySeal

HarborSeal
Horse

WhiteRhino

Ferungulates

Gibbon
Gorilla

Human
Chimpanzee

PygmyChimp
Orangutan

SumatranOrangutan

Primates

Eutheria

HouseMouse
Rat

Eutheria - Rodents

Opossum
Wallaroo

Metatheria

Echidna
Platypus

Prototheria
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Genomics & Phylogeny: SARS Virus and Others

• Clustering of SARS virus in relation to potential similar virii based

on complete sequenced genome(s) using bzip2:

• The relations are very similar to the definitive tree based on

medical-macrobio-genomics analysis from biologists.
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Genomics & Phylogeny: SARS Virus and Others

AvianAdeno1CELO

n1

n6

n11

AvianIB1

n13

n5

AvianIB2

BovineAdeno3HumanAdeno40

DuckAdeno1

n3

HumanCorona1

n8

SARSTOR2v120403

n2

MeaslesMora

n12
MeaslesSch

MurineHep11

n10
n7

MurineHep2

PRD1

n4

n9

RatSialCorona

SIRV1

SIRV2

n0
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Classification of Different File Types

Classification of files based on markedly different file types using bzip2

• Four mitochondrial gene sequences

• Four excerpts from the novel “The Zeppelin’s Passenger”

• Four MIDI files without further processing

• Two Linux x86 ELF executables (the cp and rm commands)

• Two compiled Java class files

No features of any specific domain of application are used!
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Classification of Different File Types

ELFExecutableA

n12n7

ELFExecutableB

GenesBlackBearA

n13

GenesPolarBearB

n5

GenesFoxC

n10

GenesRatD

JavaClassA

n6

n1

JavaClassB

MusicBergA

n8 n2

MusicBergB

MusicHendrixA
n0

n3

MusicHendrixB

TextA

n9

n4

TextB

TextC

n11
TextD

Perfect classification!
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Language Tree (Re)construction

• Let x1, ..., xn be the “The Universal Declaration of Human Rights”

in various languages 1, ..., n.

• Distance matrix Mij based on gzip. Language tree constructed

from Mij by the Fitch-Margoliash method. [Li 03]

• All main linguistic groups can be recognized (next slide)



Basque [Spain]
Hungarian [Hungary]
Polish [Poland]
Sorbian [Germany]
Slovak [Slovakia]
Czech [Czech Rep]
Slovenian [Slovenia]
Serbian [Serbia]
Bosnian [Bosnia]

Icelandic [Iceland]
Faroese [Denmark]
Norwegian Bokmal [Norway]
Danish [Denmark]
Norwegian Nynorsk [Norway]
Swedish [Sweden]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Irish Gaelic [UK]
Scottish Gaelic [UK]
Welsh [UK]
Romani Vlach [Macedonia]
Romanian [Romania]
Sardinian [Italy]
Corsican [France]
Sammarinese [Italy]
Italian [Italy]
Friulian [Italy]
Rhaeto Romance [Switzerland]
Occitan [France]
Catalan [Spain]
Galician [Spain]
Spanish [Spain]
Portuguese [Portugal]
Asturian [Spain]
French [France]
English [UK]
Walloon [Belgique]
OccitanAuvergnat [France]
Maltese [Malta]
Breton [France]
Uzbek [Utzbekistan]
Turkish [Turkey]
Latvian [Latvia]
Lithuanian [Lithuania]
Albanian [Albany]
Romani Balkan [East Europe]
Croatian [Croatia]

Finnish [Finland]
Estonian [Estonia]

ROMANCE

BALTIC

UGROFINNIC

CELTIC

GERMANIC

SLAVIC

ALTAIC
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Classify Music w.r.t. Composer
Let m1, ...,mn be pieces of music in MIDI format.

Preprocessing the MIDI files:

• Delete identifying information (composer, title, ...), instrument

indicators, MIDI control signals, tempo variations, ...

• Keep only note-on and note-off information.

• A note, k ∈ Z half-tones above the average note is coded as a

signed byte with value k.

• The whole piece is quantized in 0.05 second intervals.

• Tracks are sorted according to decreasing average volume, and then

output in succession.

Processed files x1, ..., xn still sounded like the original.
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Classify Music w.r.t. Composer
12 pieces of music: 4×Bach + 4×Chopin + 4×Debussy. Class. by bzip2

BachWTK2F1

n5

n8

BachWTK2F2
BachWTK2P1

n0

BachWTK2P2

ChopPrel15n9

n1

ChopPrel1

n6
n3

ChopPrel22

ChopPrel24

DebusBerg1

n7

DebusBerg4

n4
DebusBerg2

n2

DebusBerg3

Perfect grouping of processed MIDI files w.r.t. composers.
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Further Applications

• Classification of Fungi

• Optical character recognition

• Classification of Galaxies

• Clustering of novels w.r.t. authors

• Larger data sets

See [Cilibrasi&Vitanyi’05]
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The Clustering Method: Summary

• based on the universal similarity metric,

• based on Kolmogorov complexity,

• approximated by bzip2,

• with the similarity matrix represented by tree,

• approximated by the quartet method

• leads to excellent classification in many domains.
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Exercises

1. [C20] Prove that d(x, y) := max{K(x|y),K(y|x)}−K(x|x)

max{K(x),K(y)} is a metric.

2. [C25] Reproduce the phylogenetic tree of mammals and the

language tree using the CompLearn Toolkit available from

http://www.complearn.org/.
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7 BAYESIAN SEQUENCE PREDICTION

• The Bayes-Mixture Distribution

• Relative Entropy and Bound

• Predictive Convergence

• Sequential Decisions and Loss Bounds

• Generalization: Continuous Probability Classes

• Summary
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Bayesian Sequence Prediction: Abstract

We define the Bayes mixture distribution and show that the posterior

converges rapidly to the true posterior by exploiting some bounds on the

relative entropy. Finally we show that the mixture predictor is also

optimal in a decision-theoretic sense w.r.t. any bounded loss function.
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Notation: Strings & Probabilities

Strings: x= x1:n :=x1x2...xn with xt∈X and x<n := x1...xn−1.

Probabilities: ρ(x1...xn) is the probability that an (infinite) sequence

starts with x1...xn.

Conditional probability:

ρn := ρ(xn|x<n) = ρ(x1:n)/ρ(x<n),

ρ(x1...xn) = ρ(x1)·ρ(x2|x1)·...·ρ(xn|x1...xn−1).

True data generating distribution: µ
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The Bayes-Mixture Distribution ξ
• Assumption: The true (objective) environment µ is unknown.

• Bayesian approach: Replace true probability distribution µ by a
Bayes-mixture ξ.

• Assumption: We know that the true environment µ is contained in
some known countable (in)finite set M of environments.

Definition 7.1 (Bayes-mixture ξ)

ξ(x1:m) :=
∑
ν∈M

wνν(x1:m) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

• The weights wν may be interpreted as the prior degree of belief that
the true environment is ν, or kν = lnw−1

ν as a complexity penalty
(prefix code length) of environment ν.

• Then ξ(x1:m) could be interpreted as the prior subjective belief
probability in observing x1:m.
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A Universal Choice of ξ and M
• We have to assume the existence of some structure on the

environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

• We can only unravel effective structures which are describable by

(semi)computable probability distributions.

• So we may include all (semi)computable (semi)distributions in M.

• Occam’s razor and Epicurus’ principle of multiple explanations tell

us to assign high prior belief to simple environments.

• Using Kolmogorov’s universal complexity measure K(ν) for

environments ν one should set wν = 2−K(ν), where K(ν) is the

length of the shortest program on a universal TM computing ν.

• The resulting mixture ξ is Solomonoff’s (1964) universal prior.

• In the following we consider generic M and wν .
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Relative Entropy

Relative entropy: D(p||q) :=
∑

i pi ln
pi

qi

Properties: D(p||q) ≥ 0 and D(p||q) = 0 ⇔ p = q

Instantaneous relative entropy: dt(x<t) :=
∑
xt∈X

µ(xt|x<t) ln
µ(xt|x<t)

ξ(xt|x<t)

Theorem 7.2 (Total relative entropy) Dn :=
∑n

t=1E[dt] ≤ lnw−1
µ

E[f ] =Expectation of f w.r.t. the true distribution µ, e.g.

If f : Xn → R, then E[f ] :=
∑

x1:n
µ(x1:n)f(x1:n).

Proof based on dominance or universality: ξ(x) ≥ wµµ(x).
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Proof of the Entropy Bound

Dn ≡
n∑

t=1

∑
x<t

µ(x<t)·dt(x<t)
(a)
=

n∑
t=1

∑
x1:t

µ(x1:t) ln
µ(xt|x<t)

ξ(xt|x<t)
=

(b)
=

∑
x1:n

µ(x1:n) ln
n∏

t=1

µ(xt|x<t)

ξ(xt|x<t)

(c)
=

∑
x1:n

µ(x1:n) ln
µ(x1:n)

ξ(x1:n)

(d)

≤ lnw−1
µ

(a) Insert def. of dt and used chain rule µ(x<t)·µ(xt|x<t)=µ(x1:t).

(b)
∑

x1:t
µ(x1:t) =

∑
x1:n

µ(x1:n) and argument of log is independent

of xt+1:n. The t sum can now be exchanged with the x1:n sum and

transforms to a product inside the logarithm.

(c) Use chain rule again for µ and ξ.

(d) Use dominance ξ(x) ≥ wµµ(x).
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Predictive Convergence

Theorem 7.3 (Predictive convergence)

ξ(xt|x<t) → µ(xt|x<t) rapid w.p.1 for t→ ∞

Proof: D∞ ≡
∑∞

t=1 E[dt] ≤ lnw−1
µ and dt ≥ 0

=⇒ dt
t→∞−→ 0 ⇐⇒ ξt → µt.

Fazit: ξ is excellent universal predictor if unknown µ belongs to M.

How to choose M and wµ? Both as large as possible?! More later.
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Sequential Decisions
A prediction is very often the basis for some decision. The decision

results in an action, which itself leads to some reward or loss.

Let Loss(xt, yt) ∈ [0, 1] be the received loss when taking action yt∈Y
and xt∈X is the tth symbol of the sequence.

For instance, decision Y={umbrella, sunglasses} based on weather

forecasts X ={sunny, rainy}. Loss sunny rainy

umbrella 0.1 0.3

sunglasses 0.0 1.0

The goal is to minimize the µ-expected loss. More generally we define

the Λρ prediction scheme, which minimizes the ρ-expected loss:

y
Λρ

t := arg min
yt∈Y

∑
xt

ρ(xt|x<t)Loss(xt, yt)
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Loss Bounds
• Definition: µ-expected loss when Λρ predicts the tth symbol:

Losst(Λρ)(x<t) :=
∑

xt
µ(xt|x<t)Loss(xt, y

Λρ

t )

• Losst(Λµ/ξ) made by the informed/universal scheme Λµ/ξ.

Losst(Λµ) ≤ Losst(Λ) ∀t,Λ.

• Theorem: 0≤ Losst(Λξ)−Losst(Λµ) ≤
∑

xt
|ξt−µt|≤

√
2dt

w.p.1−→ 0

• Total Loss1:n(Λρ) :=
∑n

t=1 E[Losst(Λρ)].

• Theorem:
√
Loss1:n(Λξ)−

√
Loss1:n(Λµ) ≤

√
2Dn ≤

√
2lnw−1

µ

• Corollary: If Loss1:∞(Λµ) is finite, then Loss1:∞(Λξ) is finite, and
Loss1:n(Λξ)/Loss1:∞(Λµ) → 1 if Loss1:∞(Λµ) → ∞.

• Remark: Holds for any loss function ∈ [0, 1] with no assumptions
(like i.i.d., Markovian, stationary, ergodic, ...) on µ ∈ M.
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Proof of Instantaneous Loss Bounds

Abbreviations: X = {1, ..., N}, N = |X |, i = xt, yi = µ(xt|x<t),

zi = ξ(xt|x<t), m = y
Λµ

t , s = y
Λξ

t , ℓxy = Loss(x, y).

This and definition of y
Λµ

t and y
Λξ

t and
∑

i ziℓis ≤
∑

i ziℓij ∀j implies

Losst(Λξ)− Losst(Λµ) ≡
∑
i

yiℓis−
∑
i

yiℓim
(a)

≤
∑
i

(yi − zi)(ℓis − ℓim)

≤
∑
i

|yi−zi|·|ℓis−ℓim|
(b)

≤
∑
i

|yi − zi|
(c)

≤
√∑

i

yi ln
yi
zi

≡
√
2dt(x<t)

(a) We added
∑

i zi(ℓim − ℓis) ≥ 0.

(b) |ℓis − ℓim| ≤ 1 since ℓ ∈ [0, 1].

(c) Pinsker’s inequality (elementary, but not trivial)
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Optimality of the Universal Predictor

• There are M and µ ∈ M and weights wµ for which the loss bounds

are tight.

• The universal prior ξ is pareto-optimal, in the sense that there is no

ρ with F(ν, ρ) ≤ F(ν, ξ) for all ν ∈ M and strict inequality for at

least one ν, where F is the instantaneous or total squared distance

st, Sn, or entropy distance dt, Dn, or general Losst, Loss1:n.

• ξ is balanced pareto-optimal in the sense that by accepting a slight

performance decrease in some environments one can only achieve a

slight performance increase in other environments.

• Within the set of enumerable weight functions with short program,

the universal weights wν = 2−K(ν) lead to the smallest performance

bounds within an additive (to lnw−1
µ ) constant in all enumerable

environments.
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Continuous Probability Classes M
In statistical parameter estimation one often has a continuous

hypothesis class (e.g. a Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {µθ : θ ∈ IRd}, ξ(x1:n) :=

∫
IRd

dθ w(θ)µθ(x1:n),

∫
IRd

dθ w(θ) = 1

We only used ξ(x1:n)≥wµ ·µ(x1:n)
which was obtained by dropping the sum over µ.

Here, restrict integral over IRd to a small vicinity Nδ of θ.

For sufficiently smooth µθ and w(θ) we expect

ξ(x1:n) & |Nδn |·w(θ)·µθ(x1:n) =⇒ Dn . lnw−1
µ + ln |Nδn |−1
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Continuous Probability Classes M
Average Fisher information ȷ̄n measures curvature

(parametric complexity) of lnµθ.

j̄n :=
1

n

∑
x1:n

µ(x1:n)∇θ lnµθ(x1:n)∇T
θ lnµθ(x1:n)|θ=θ0

Under weak regularity conditions on ȷ̄n on can prove:

Theorem 7.4 (Continuous entropy bound)

Dn ≤ lnw−1
µ + d

2 ln
n
2π + 1

2 ln det ȷ̄n + o(1)

i.e. Dn grows only logarithmically with n.

E.g. ȷ̄n = O(1) for the practically very important class of stationary

(kth-order) finite-state Markov processes (k = 0 is i.i.d.).
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Bayesian Sequence Prediction: Summary

• General sequence prediction: Use known (subj.) Bayes mixture

ξ =
∑

ν∈M wνν in place of unknown (obj.) true distribution µ.

• Bound on the relative entropy between ξ and µ.

⇒ posterior of ξ converges rapidly to the true posterior µ.

• ξ is also optimal in a decision-theoretic sense w.r.t. any bounded

loss function.

• No structural assumptions on M and ν ∈ M.
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8 UNIVERSAL RATIONAL AGENTS

• Agents in Known (Probabilistic) Environments

• The Universal Algorithmic Agent AIXI

• Important Environmental Classes

• Discussion
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Universal Rational Agents: Abstract

Sequential decision theory formally solves the problem of rational agents

in uncertain worlds if the true environmental prior probability distribution

is known. Solomonoff’s theory of universal induction formally solves the

problem of sequence prediction for unknown prior distribution.

Here we combine both ideas and develop an elegant parameter-free

theory of an optimal reinforcement learning agent embedded in an

arbitrary unknown environment that possesses essentially all aspects of

rational intelligence. The theory reduces all conceptual AI problems to

pure computational ones. The resulting AIXI model is the most

intelligent unbiased agent possible.

Other discussed topics are optimality notions, asymptotic consistency,

and some particularly interesting environment classes.
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Overview

• Decision Theory solves the problem of rational agents in uncertain

worlds if the environmental probability distribution is known.

• Solomonoff’s theory of Universal Induction solves the problem of

sequence prediction for unknown prior distribution.

• We combine both ideas and get a parameterless model of

Universal Artificial Intelligence without Parameters

= =

Decision Theory = Probability + Utility Theory
+ +

Universal Induction = Ockham + Epicurus + Bayes
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Preliminary Remarks

• The goal is to mathematically define a unique model superior to any

other model in any environment.

• The AIXI agent is unique in the sense that it has no parameters

which could be adjusted to the actual environment in which it is

used.

• In this first step toward a universal theory of AI

we are not interested in computational aspects.

• Nevertheless, we are interested in maximizing a utility function,

which means to learn in as minimal number of cycles as possible.

The interaction cycle is the basic unit, not the computation time

per unit.
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8.1 Agents in Known (Probabilistic)

Environments: Contents

• The Agent-Environment Model & Interaction Cycle

• Rational Agents in Deterministic Environments

• Utility Theory for Deterministic Environments

• Emphasis in AI/ML/RL ⇔ Control Theory

• Probabilistic Environment / Perceptions

• Functional≡Recursive≡Iterative AIµ Model

• Limits we are Interested in

• Relation to Bellman Equations

• (Un)Known environment µ
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The Agent Model

Most if not all AI problems can be

formulated within the agent

framework

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

������ HHHHHY

�������1PPPPPPPq
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The Agent-Environment Interaction Cycle

for k:=1 to m do

- p thinks/computes/modifies internal state = work tape.

- p writes output yk∈Y.

- q reads output yk.

- q computes/modifies internal state.

- q writes reward input rk∈R ⊂ R.
- q writes regular input ok∈O.

- p reads input xk :=rkok∈X .

endfor

- m is lifetime of system (total number of cycles).

- Often R={0, 1}={bad, good}={error, correct}.
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Agents in Deterministic Environments

- p :X ∗→Y∗ is deterministic policy of the agent,

p(x<k) = y1:k with x<k ≡ x1...xk−1.

- q :Y∗→X ∗ is deterministic environment,

q(y1:k) = x1:k with y1:k ≡ y1...yk.

- Input xk≡rkok consists of a regular informative part ok

and reward r(xk) := rk ∈ [0..rmax].
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Utility Theory for Deterministic Environments

The (agent,environment) pair (p,q) produces the unique I/O sequence

ωpq := ypq1 x
pq
1 y

pq
2 x

pq
2 y

pq
3 x

pq
3 ...

Total reward (value) in cycles k to m is defined as

V pq
km := r(xpqk ) + ...+ r(xpqm )

Optimal agent is policy that maximizes total reward

p∗ := argmax
p

V pq
1m

⇓

V p∗q
km ≥ V pq

km ∀p



Universal Rational Agents - 234 - Marcus Hutter

Emphasis in AI/ML/RL ⇔ Control Theory

Both fields start from Bellman-equations and aim at agents/controllers

that behave optimally and are adaptive, but differ in terminology and

emphasis:
agent =̂ controller

environment =̂ system
(instantaneous) reward =̂ (immediate) cost

model learning =̂ system identification
reinforcement learning =̂ adaptive control

exploration↔exploitation problem =̂ estimation↔control problem

qualitative solution ⇔ high precision
complex environment ⇔ simple (linear) machine
temporal difference ⇔ Kalman filtering / Ricatti eq.

AIξ is the first non-heuristic formal approach that is general enough to

cover both fields. [Hut05]
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Probabilistic Environment / Functional AIµ
Replace q by a prior probability distribution µ(q) over environments.

The total expected reward in cycles k to m is

V pµ
km(ẏẋ<k) :=

1

N
∑

q:q(ẏ<k)=ẋ<k

µ(q) · V pq
km

The history is no longer uniquely determined.

ẏẋ<k := ẏ1ẋ1...ẏk−1ẋk−1 :=actual history.

AIµ maximizes expected future reward by looking hk≡mk−k+1 cycles
ahead (horizon). For mk=m, AIµ is optimal.

ẏk := argmax
yk

max
p:p(ẋ<k)=ẏ<kyk

V pµ
kmk

(ẏẋ<k)

Environment responds with ẋk with probability determined by µ.

This functional form of AIµ is suitable for theoretical considerations.
The iterative form (next slides) is more suitable for ‘practical’ purpose.
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Probabilistic Perceptions

The probability that the environment produces input xk in cycle k under

the condition that the history h is y1x1...yk−1xk−1yk is abbreviated by

µ(xk|yx<kyk) ≡ µ(xk|y1x1...yk−1xk−1yk)

With the chain rule, the probability of input x1...xk if system outputs

y1...yk is

µ(x1...xk|y1...yk) = µ(x1|y1)·µ(x2|yx1y2)· ... ·µ(xk|yx<kyk)

A µ of this form is called a chronological probability distribution.
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Expectimax Tree – Recursive AIµ Model
V ∗
µ (h) ≡ V ∗µ

km(h) is the value (future expected reward sum) of the

optimal informed agent AIµ in environment µ in cycle k given history h.

r
�

�
�

��
yk=0

@
@
@

@@
yk=1

max︸ ︷︷ ︸
V

∗
µ (yx<k) = max

yk
V

∗
µ (yx<kyk)

action yk with max value.

q
�
�
�
��
ok=0
rk= ...

A
A
A
AA
ok=1
rk= ...

E︸︷︷︸
q
�
�
�
��

ok=0
rk= ...

A
A
A
AA

ok=1
rk= ...

E︸︷︷︸
V

∗
µ (yx<kyk) =

∑
xk

[rk + V
∗
µ (yx1:k)]µ(xk|yx<kyk)

µ expected reward rk and observation ok.q
�

��
A
AA

max
⌣

yk+1

q
�
��
A
AA

max
⌣

yk+1

q
�
��

A
AA

max
⌣

yk+1

q
�
��
A
AA

max
⌣

V
∗
µ (yx1:k) = max

yk+1
V

∗
µ (yx1:kyk+1)

· · · · · · · · · · · · · · · · · · · · · · · ·
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Iterative AIµ Model

The Expectimax sequence/algorithm: Take reward expectation over the

xi and maximum over the yi in chronological order to incorporate

correct dependency of xi and yi on the history.

V ∗µ
km(ẏẋ<k) = max

yk

∑
xk

...max
ym

∑
xm

(r(xk)+...+r(xm))·µ(xk:m|ẏẋ<kyk:m)

ẏk = argmax
yk

∑
xk

...max
ymk

∑
xmk

(r(xk)+ ...+r(xmk
))·µ(xk:mk

|ẏẋ<kyk:mk
)

This is the essence of Sequential Decision Theory.

Decision Theory = Probability + Utility Theory
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Functional≡Recursive≡Iterative AIµ Model

The functional and recursive/iterative AIµ models behave identically

with the natural identification

µ(x1:k|y1:k) =
∑

q:q(y1:k)=x1:k

µ(q)

Remaining Problems:

• Computational aspects.

• The true prior probability is usually not (even approximately not)

known.
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Limits we are Interested in

1 ≪ ⟨l(ykxk)⟩ ≪ k ≪ m ≪ |Y × X| < ∞

1
a
≪ 216

b
≪ 224

c
≪ 232

d
≪ 265536

e
< ∞

(a) The agents interface is wide.

(b) The interface is sufficiently explored.

(c) The death is far away.

(d) Most input/outputs do not occur.

(e) All spaces are finite.

These limits are never used in proofs but ...

... we are only interested in theorems which do not degenerate under the

above limits.
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Relation to Bellman Equations

• If µAI is a completely observable Markov decision process,

then AIµ reduces to the recursive Bellman equations [BT96].

• Recursive AIµ may in general be regarded as (pseudo-recursive)

Bellman equation with complete history yx<k as environmental

state.

• The AIµ model assumes neither stationarity, nor Markov property,

nor complete observability of the environment.

⇒ every “state” occurs at most once in the lifetime of the agent.

Every moment in the universe is unique!

• There is no obvious universal similarity relation on (X×Y)∗

allowing an effective reduction of the size of the state space.
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Known environment µ

• Assumption: µ is the true environment in which the agent operates

• Then, policy pµ is optimal in the sense that no other policy for an

agent leads to higher µAI -expected reward.

• Special choices of µ: deterministic or adversarial environments,

Markov decision processes (MDPs).

• There is no principle problem in computing the optimal action yk as

long as µAI is known and computable and X , Y and m are finite.

• Things drastically change if µAI is unknown ...
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Unknown environment µ

• Reinforcement learning algorithms [SB98] are commonly used in this

case to learn the unknown µ or directly its value.

• They succeed if the state space is either small or has effectively

been made small by so-called generalization techniques.

• Solutions are either ad hoc, or work in restricted domains only, or

have serious problems with state space exploration versus

exploitation, or are prone to diverge, or have non-optimal learning

rate.

• We introduce a universal and optimal mathematical model now ...
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8.2 The Universal Algorithmic Agent

AIXI: Contents

• Formal Definition of Intelligence

• Is Universal Intelligence Υ any Good?

• Definition of the Universal AIXI Model

• Universality of MAI and ξAI

• Convergence of ξAI to µAI

• Intelligence Order Relation

• On the Optimality of AIXI

• Value Bounds & Asymptotic Learnability

• The OnlyOne CounterExample

• Separability Concepts
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Formal Definition of Intelligence
• Agent follows policy π : (A×O×R)∗ ; A
• Environment reacts with µ : (A×O×R)∗×A ; O×R
• Performance of agent π in environment µ

= expected cumulative reward = V π
µ := Eπ

µ[
∑∞

t=1 r
πµ
t ]

• True environment µ unknown
⇒ average over wide range of environments
(all semi-computable chronological semi-measures MU )

• Ockham+Epicurus: Weigh each environment with its
Kolmogorov complexity K(µ) := minp{length(p) : U(p) = µ}

• Universal intelligence of agent π is Υ(π) :=
∑

µ∈MU
2−K(µ)V π

µ .

• Compare to our informal definition: Intelligence measures an
agent’s ability to perform well in a wide range of environments.

• AIXI = argmaxπ Υ(π) = most intelligent agent.
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Is Universal Intelligence Υ any Good?
• Captures our informal definition of intelligence.

• Incorporates Occam’s razor.

• Very general: No restriction on internal working of agent.

• Correctly orders simple adaptive agents.

• Agents with high Υ like AIXI are extremely powerful.

• Υ spans from very low intelligence up to ultra-high intelligence.

• Practically meaningful: High Υ = practically useful.

• Non-anthropocentric: based on information & computation theory.
(unlike Turing test which measures humanness rather than int.)

• Simple and intuitive formal definition: does not rely on equally hard
notions such as creativity, understanding, wisdom, consciousness.

Υ is valid, informative, wide range, general, dynamic, unbiased,
fundamental, formal, objective, fully defined, universal.
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Definition of the Universal AIXI Model

Universal AI = Universal Induction + Decision Theory

Replace µAI in sequential decision model AIµ by an appropriate

generalization of Solomonoff’s M .

M(x1:k|y1:k) :=
∑

q:q(y1:k)=x1:k

2−l(q)

ẏk = argmax
yk

∑
xk

...max
ymk

∑
xmk

(r(xk)+ ...+r(xmk
))·M(xk:mk

|ẏẋ<kyk:mk
)

Functional form: µ(q) ↪→ ξ(q) :=2−ℓ(q).

Bold Claim: AIXI is the most intelligent environmental

independent agent possible.
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Universality of MAI and ξAI

M(x1:n|y1:n)
×
= ξ(x1:n|y1:n) ≥ 2−K(ρ)ρ(x1:n|y1:n) ∀ chronological ρ

The proof is analog as for sequence prediction. Actions yk are pure

spectators (here and below)

Convergence of ξAI to µAI

Similarly to Bayesian multistep prediction [Hut05] one can show

ξAI(xk:mk
|x<ky1:mk

)
k→∞−→ µAI(xk:mk

|x<ky1:mk
) with µ prob. 1.

with rapid conv. for bounded horizon hk ≡ mk − k + 1 ≤ hmax <∞

Does replacing µAI with ξAI lead to AIξ system with asymptotically

optimal behavior with rapid convergence?

This looks promising from the analogy to the Sequence Prediction (SP)

case, but is much more subtle and tricky!
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Intelligence Order Relation

Definition 8.1 (Intelligence order relation) We call a policy p

more or equally intelligent than p′ and write

p ≽ p′ :⇔ ∀k∀ẏẋ<k : V pξ
kmk

(ẏẋ<k) ≥ V p′ξ
kmk

(ẏẋ<k),

i.e. if p yields in any circumstance higher ξ-expected reward than

p′.

As the algorithm pξ behind the AIXI agent maximizes V pξ
kmk

,

we have pξ ≽ p for all p.

The AIXI model is hence the most intelligent agent w.r.t. ≽.

Relation ≽ is a universal order relation in the sense that it is free of any

parameters (except mk) or specific assumptions about the environment.
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On the Optimality of AIXI

• What is meant by universal optimality? Value bounds for AIXI are

expected to be weaker than the SP loss bounds because problem

class covered by AIXI is larger.

• The problem of defining and proving general value bounds becomes

more feasible by considering, in a first step, restricted environmental

classes.

• Another approach is to generalize AIXI to AIξ, where

ξ() =
∑

ν∈M wνν() is a general Bayes mixture of distributions ν in

some class M.

• A possible further approach toward an optimality “proof” is to

regard AIXI as optimal by construction. (common Bayesian

perspective, e.g. Laplace rule or Gittins indices).
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Value Bounds & Asymptotic Learnability

Naive value bound analogously to error bound for SP

V pbestµ
1m

?
≥ V pµ

1m − o(...) ∀µ, p

HeavenHell Counter-Example: Set of environments {µ0, µ1} with

Y=R= {0, 1} and rk= δiy1 in environment µi violates value bound.

The first output y1 decides whether all future rk=1 or 0.

Asymptotic learnability: µ probability Dnµξ/n of suboptimal outputs of

AIXI different from AIµ in the first n cycles tends to zero

Dnµξ/n→ 0 , Dnµξ := Eµ

[ n∑
k=1

1−δẏµ
k ,ẏ

ξ
k

]
This is a weak asymptotic convergence claim.
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The OnlyOne CounterExample

Let R= {0, 1} and |Y| be large. Consider all (deterministic)

environments in which a single complex output y∗ is correct (r=1) and

all others are wrong (r=0). The problem class is

{µ : µ(rk = 1|x<ky1:k) = δyky∗ , K(y∗)= ⌊ log2 |Y |⌋}

Problem: Dkµξ≤2K(µ) is the best possible error bound we can expect,

which depends on K(µ) only. It is useless for k ≪ |Y | ×
= 2K(µ),

although asymptotic convergence satisfied.

But: A bound like 2K(µ) reduces to 2K(µ|ẋ<k) after k cycles, which is

O(1) if enough information about µ is contained in ẋ<k in any form.
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Separability Concepts

that might be useful for proving reward bounds

• Forgetful µ.

• Relevant µ.

• Asymptotically learnable µ.

• Farsighted µ.

• Uniform µ.

• (Generalized) Markovian µ.

• Factorizable µ.

• (Pseudo) passive µ.

Other concepts

• Deterministic µ.

• Chronological µ.
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8.3 Important Environmental Classes:

Contents

• Sequence Prediction (SP)

• Strategic Games (SG)

• Function Minimization (FM)

• Supervised Learning by Examples (EX)

In this subsection ξ ≡ ξAI :
×
=MAI .
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Particularly Interesting Environments

• Sequence Prediction, e.g. weather or stock-market prediction.

Strong result: V ∗
µ − V pξ

µ = O(
√

K(µ)
m ), m =horizon.

• Strategic Games: Learn to play well (minimax) strategic zero-sum

games (like chess) or even exploit limited capabilities of opponent.

• Optimization: Find (approximate) minimum of function with as few

function calls as possible. Difficult exploration versus exploitation

problem.

• Supervised learning: Learn functions by presenting (z, f(z)) pairs

and ask for function values of z′ by presenting (z′, ?) pairs.

Supervised learning is much faster than reinforcement learning.

AIξ quickly learns to predict, play games, optimize, and learn supervised.
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Sequence Prediction (SP)
SPµ Model: Binary sequence z1z2z3... with true prior µSP (z1z2z3...).

AIµ Model: yk = prediction for zk; ok+1 = ϵ.

rk+1 = δykzk = 1/0 if prediction was correct/wrong.

Correspondence:

µAI(r1...rk|y1...yk) = µSP (δy1r1 ...δykrk) = µSP (z1...zk)

For arbitrary horizon hk: ẏ
AIµ
k = argmax

yk

µ(yk|ż1...żk−1) = ẏ
SPΘµ

k

Generalization: AIµ always reduces exactly to XXµ model if XXµ is

optimal solution in domain XX.

AIξ model differs from SPξ model: Even for hk=1

ẏAIξ
k = argmax

yk

ξ(rk = 1|ẏṙ<kyk) ̸= ẏ
SPΘξ

k

Weak error bound: #ErrorsAI
nξ

×
< 2K(µ) < ∞ for deterministic µ.
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Strategic Games (SG)
• Consider strictly competitive strategic games like chess.

• Minimax is best strategy if both Players are rational with unlimited
capabilities.

• Assume that the environment is a minimax player of some game ⇒
µAI uniquely determined.

• Inserting µAI into definition of ẏAI
k of AIµ model reduces the

expecimax sequence to the minimax strategy (ẏAI
k = ẏSG

k ).

• As ξAI →µAI we expect AIξ to learn the minimax strategy for any
game and minimax opponent.

• If there is only non-trivial reward rk∈{win, loss, draw} at the end
of the game, repeated game playing is necessary to learn from this
very limited feedback.

• AIξ can exploit limited capabilities of the opponent.
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Function Maximization (FM)

Approximately maximize (unknown) functions with as few function calls

as possible. Applications:

• Traveling Salesman Problem (bad example).

• Minimizing production costs.

• Find new materials with certain properties.

• Draw paintings which somebody likes.

µFM (z1...zn|y1...yn) :=
∑

f :f(yi)=zi ∀1≤i≤n

µ(f)

Greedily choosing yk which maximizes f in the next cycle does not work.

General Ansatz for FMµ/ξ:

ẏk = argmax
yk

∑
zk

...max
ym

∑
zm

(α1z1+ ...+αmzm)·µ(zm|ẏż1...ym)

Under certain weak conditions on αi, f can be learned with AIξ.
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Function Maximization – Example
Very hard problem in practice, since (unlike prediction, classification,
regression) it involves the infamous exploration↔explotation problem

Exploration: If horizon is large, func-
tion is probed where uncertainty is
large, since global maximum might be
there.

[Srinivas et al. 2010]

Exploitation: If horizon is small, func-
tion is probed where maximum is be-
lieved to be, since agent needs/wants
good results now.

Efficient and effective heuristics for special function classes available:
Extension of Upper Confidence Bound for Bandits (UCB) algorithm.
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Supervised Learning by Examples (EX)

Learn functions by presenting (z, f(z)) pairs and ask for function values

of z′ by presenting (z′, ?) pairs.

More generally: Learn relations R∋(z, v).

Supervised learning is much faster than reinforcement learning.

The AIµ/ξ model:

ok = (zk, vk) ∈ R∪(Z×{?}) ⊂ Z×(Y ∪{?}) = O

yk+1= guess for true vk if actual vk=?.

rk+1= 1 iff (zk, yk+1)∈R

AIµ is optimal by construction.

EX is closely related to classification which itself can be phrased as

sequence prediction task.
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Supervised Learning – Intuition

The AIξ model:

• Inputs ok contain much more than 1 bit feedback per cycle.

• Short codes dominate ξ.

• The shortest code of examples (zk, vk) is a coding of R

and the indices of the (zk, vk) in R.

• This coding of R evolves independently of the rewards rk.

• The system has to learn to output yk+1 with (zk, yk+1)∈R.

• As R is already coded in q, an additional algorithm of length O(1)

needs only to be learned.

• Rewards rk with information content O(1) are needed for this only.

• AIξ learns to learn supervised.
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8.4 Discussion: Contents

• Uncovered Topics

• Remarks

• Outlook

• Exercises

• Literature
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Uncovered Topics

• General and special reward bounds and convergence results for AIXI

similar to SP case.

• Downscale AIXI in more detail and to more problem classes analog

to the downscaling of SP to Minimum Description Length and

Finite Automata.

• There is no need for implementing extra knowledge,

as this can be learned by presenting it in ok in any form.

• The learning process itself is an important aspect.

• Noise or irrelevant information in the inputs do not disturb the AIXI

system.
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Remarks

• We have developed a parameterless AI model based on sequential

decisions and algorithmic probability.

• We have reduced the AI problem to pure computational questions.

• AIξ seems not to lack any important known methodology of AI,

apart from computational aspects.

• Philosophical questions: relevance of non-computational physics

(Penrose), number of wisdom Ω (Chaitin), consciousness, social

consequences.
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Outlook
mainly technical results for AIXI and variations

• General environment classes MU ; M.

• Results for general/universal M for discussed performance criteria.

• Strong guarantees for specific classes M by exploiting extra

properties of the environments.

• Restricted policy classes.

• Universal choice of the rewards.

• Discounting future rewards and time(in)consistency.

• Approximations and algorithms.

Most of these items will be covered in the next Chapter
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Exercises

1. [C30] Proof equivalence of the functional, recursive, and iterative

AIµ models. Hint: Consider k = 2 and m = 3 first. Use

maxy3(·)
∑

x2
f(x2, y3(x2)) ≡

∑
x2 maxy3 f(x2, y3), where y3(·) is

a function of x2, and maxy3(·) maximizes over all such functions.

2. [C30] Show that the optimal policy p∗k := argmaxp V
pµ
km(yx<k) is

independent of k. More precisely, the actions of p∗1 and p∗k in cycle t

given history yx<t coincide for k ≥ t. The derivation goes hand in

hand with the derivation of Bellman’s equations [BT96].
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9 THEORY OF RATIONAL AGENTS

• The Bayesian Agent AIξ

• Future Value and Discounting

• Knowledge-Seeing and Optimistic Agents

• Discussion



Theory of Rational Agents - 269 - Marcus Hutter

Theory of Rational Agents: Abstract

... There are strong arguments that the resulting AIXI model is the most

intelligent unbiased agent possible.

Other discussed topics are relations between problem classes, the

horizon problem, and computational issues.
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9.1 The Bayesian Agent AIξ: Contents

• Agents in Probabilistic Environments

• Optimal Policy and Value – AIρ Model

• The Bayes-Mixture Distribution ξ

• Questions of Interest

• Linearity and Convexity of Vρ in ρ

• Pareto Optimality

• Self-optimizing Policies

• Environments w./ (Non)Self-Optimizing Policies
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Agents in Probabilistic Environments

Given history y1:kx<k, the probability that the environment leads to

perception xk in cycle k is (by definition) ρ(xk|y1:kx<k).

Abbreviation (chain rule)

ρ(x1:m|y1:m) = ρ(x1|y1)·ρ(x2|y1:2x1)· ... ·ρ(xm|y1:mx<m)

The average value of policy p with horizon m in environment ρ is

defined as

V p
ρ := 1

m

∑
x1:m

(r1+ ...+rm)ρ(x1:m|y1:m)|y1:m=p(x<m)

The goal of the agent should be to maximize the value.
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Optimal Policy and Value – AIρ Model

The ρ-optimal policy pρ := argmaxp V
p
ρ maximizes V p

ρ ≤ V ∗
ρ := V pρ

ρ .

Explicit expressions for the action yk in cycle k of the ρ-optimal policy

pρ and their value V ∗
ρ are

yk = argmax
yk

∑
xk

max
yk+1

∑
xk+1

... max
ym

∑
xm

(rk+ ...+rm)·ρ(xk:m|y1:mx<k),

V ∗
ρ = 1

m max
y1

∑
x1

max
y2

∑
x2

... max
ym

∑
xm

(r1+ ...+rm)·ρ(x1:m|y1:m).

Keyword: Expectimax tree/algorithm.
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The Bayes-Mixture Distribution ξ

Assumption: The true environment µ is unknown.

Bayesian approach: The true probability distribution µAI is not learned

directly, but is replaced by a Bayes-mixture ξAI .

Assumption: We know that the true environment µ is contained in some

known (finite or countable) set M of environments.

The Bayes-mixture ξ is defined as

ξ(x1:m|y1:m) :=
∑
ν∈M

wνν(x1:m|y1:m) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

The weights wν may be interpreted as the prior degree of belief that the

true environment is ν.

Then ξ(x1:m|y1:m) could be interpreted as the prior subjective belief

probability in observing x1:m, given actions y1:m.
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Questions of Interest

• It is natural to follow the policy pξ which maximizes V p
ξ .

• If µ is the true environment the expected reward when following

policy pξ will be V pξ

µ .

• The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡ V ∗
µ .

• Are there policies with uniformly larger value than V pξ

µ ?

• How close is V pξ

µ to V ∗
µ ?

• What is the most general class M and weights wν?

M = MU and wν = 2−K(ν) =⇒ AIξ =AIXI !
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Linearity and Convexity of Vρ in ρ

Theorem 9.1 (Linearity and convexity of Vρ in ρ)

V p
ρ is a linear function in ρ: V p

ξ =
∑

ν wνV
p
ν

V ∗
ρ is a convex function in ρ: V ∗

ξ ≤
∑

ν wνV
∗
ν

where ξ(x1:m|y1:m) =
∑

ν wν ν(x1:m|y1:m).

These are the crucial properties of the value function Vρ.

Loose interpretation: A mixture can never increase performance.
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Pareto Optimality
Every policy based on an estimate ρ of µ which is closer to µ than ξ is,

outperforms pξ in environment µ, simply because it is more tailored

toward µ. On the other hand, such a system performs worse than pξ in

other environments:

Theorem 9.2 (Pareto optimality of pξ) Policy pξ is Pareto-

optimal in the sense that there is no other policy p with V p
ν ≥ V pξ

ν

for all ν ∈ M and strict inequality for at least one ν.

From a practical point of view a significant increase of V for many

environments ν may be desirable even if this causes a small decrease of

V for a few other ν. This is impossible due to

Balanced Pareto optimality:

∆ν := V pξ

ν − V p̃
ν , ∆ :=

∑
ν wν∆ν ⇒ ∆ ≥ 0.
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Self-optimizing Policies

Under which circumstances does the value of the universal policy pξ

converge to optimum?

V pξ

ν → V ∗
ν for horizon m→ ∞ for all ν ∈ M. (9.3)

The least we must demand from M to have a chance that (9.3) is true

is that there exists some policy p̃ at all with this property, i.e.

∃p̃ : V p̃
ν → V ∗

ν for horizon m→ ∞ for all ν ∈ M. (9.4)

Main result:

Theorem 9.5 (Self-optimizing policy pξ (9.4) ⇒ (9.3))

The necessary condition of the existence of a self-optimizing policy

p̃ is also sufficient for pξ to be self-optimizing.
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Environments w./ (Non)Self-Optimizing Policies
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Discussion of Self-optimizing Property

• The beauty of this theorem is that the necessary condition of

convergence is also sufficient.

• The unattractive point is that this is not an asymptotic convergence

statement of a single policy pξ for time k → ∞ for some fixed m.

• Shift focus from the total value V and horizon m→ ∞ to the

future value (value-to-go) V and current time k → ∞.
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9.2 Future Value and Discounting:

Contents

• Results for Discounted Future Value

• Continuity of Value

• Convergence of Universal to True Value

• Markov Decision Processes (MDP)

• Importance of the Right Discounting

• Properties of Ergodic MDPs

• General Discounting

• Effective Horizon

• Other Attempts to Deal with the Horizon Issue

• Time(In)Consistent Discounting
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Future Value and Discounting

• Eliminate the horizon by discounting the rewards rk ; γkrk with

Γk :=
∑∞

i=k γi <∞ and letting m→ ∞.

• V πρ
kγ :=

1

Γk
lim

m→∞

∑
xk:m

(γkrk+...+γmrm)ρ(xk:m|y1:mx<k)|y1:m=p(x<m)

• Further advantage: Traps (non-ergodic environments) do not

necessarily prevent self-optimizing policies any more.
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Results for Discounted Future Value

Theorem 9.6 (Properties of Discounted Future Value)

• V πρ
kγ is linear in ρ: V πξ

kγ =
∑

ν w
ν
k V

πν
kγ .

• V ∗ρ
kγ is convex in ρ: V ∗ξ

kγ ≤
∑

ν w
ν
k V

∗ν
kγ .

• where wν
k := wν

ν(x<k|y<k)
ξ(x<k|y<k)

is the posterior belief in ν.

• pξ is Pareto-optimal in the sense that there is no other policy

π with V πν
kγ ≥ V pξν

kγ for all ν ∈ M and strict inequality for at

least one ν.

• If there exists a self-optimizing policy for M, then pξ is self-

optimizing in the sense that

If ∃π̃k∀ν : V π̃kν
kγ

k→∞−→ V ∗ν
kγ =⇒ V pξµ

kγ
k→∞−→ V ∗µ

kγ .
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Continuity of Value

Theorem 9.7 (Continuity of discounted value)

The values V πµ
kγ and V ∗µ

kγ are continuous in µ, and V pµ̂µ
kγ is continuous

in µ̂ at µ̂ = µ w.r.t. a conditional 1-norm in the following sense:

If
∑

xk
|µ(xk|x<ky1:k)− µ̂(xk|x<ky1:k)| ≤ ε ∀yx<kyk ∀k ≥ k0, then

|V πµ
kγ − V πµ̂

kγ | ≤ δ(ε), |V ∗µ
kγ − V ∗µ̂

kγ | ≤ δ(ε), |V ∗µ
kγ − V pµ̂µ

kγ | ≤ 2δ(ε)

∀ k ≥ k0 and yx<k, where δ(ε) := rmax ·min
n≥k

{(n−k)ε+ Γn

Γk
} ε→0−→ 0.

Warning: V pξµ
kγ ̸→ V ∗µ

kγ , since ξ → µ does not hold for all yx1:∞, but

only for µ-random ones.

Average Value: By setting γk = 1 for k ≤ m and γk = 0 for k > m we

also get continuity of V ...
km.
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Convergence of Universal to True Value

Theorem 9.8 (Convergence of universal to true value)

For a given policy p and history generated by p and µ, i.e. on-policy,

the future universal value V pξ
··· converges to the true value V pµ

··· :

V pξ
kmk

k→∞−→ V pµ
kmk

i.m.s. if hmax <∞,

V pξ
kγ

k→∞−→ V pµ
kγ i.m. for any γ.

If the history is generated by p = pξ, this implies V ∗ξ
kγ → V pξµ

kγ .

Hence the universal value V ∗ξ
kγ can be used to estimate the true value

V pξµ
kγ , without any assumptions on M and γ.

Nevertheless, maximization of V pξ
kγ may asymptotically differ from max.

of V pµ
kγ , since V pξ

kγ ̸→ V pµ
kγ for p ̸= pξ is possible (and also V ∗ξ

kγ ̸→ V ∗µ
kγ ).
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Markov Decision Processes (MDP)
From all possible environments, Markov (Decision) Processes are

probably the most intensively studied ones.

Definition 9.9 (Ergodic MDP)

We call µ a (stationary) MDP if the probability of observing ok ∈
O and reward rk ∈ R, only depends on the last action yk ∈ Y
and the last observation ok−1 (called state), i.e. if µ(xk|x<ky1:k) =

µ(xk|ok−1yk), where xk ≡ okrk.

An MDP µ is called ergodic if there exists a policy under which

every state is visited infinitely often with probability 1.

If the transition matrix µ(ok|ok−1yk) is independent of the action yk,

the MDP is a Markov process;

If µ(xk|ok−1yk) is independent of ok−1 we have an i.i.d. process.
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Importance of the Right Discounting

Standard geometric discounting: γk = γk with 0 < γ < 1.

Problem: Most environments do not possess self-optimizing policies

under this discounting.

Reason: Effective horizon heffk is finite (∼ 1/ ln 1
γ for γk = γk).

The analogue of m→ ∞ is k → ∞ and heffk → ∞ for k → ∞.

Result: Policy pξ is self-optimizing for the class of (lth order) ergodic

MDPs if γk+1

γk
→ 1.

Example discounting: γk = k−2 or γk = k−1−ε or γk = 2−K(k).

Horizon is of the order of the age of the agent: heffk ∼ k.
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Properties of Ergodic MDPs

• Stationary MDPs µ have stationary optimal policies pµ in case of

geometric discount, mapping the same state/observation ok always

to the same action yk.

• A mixture ξ of MDPs is itself not an MDP, i.e. ξ ̸∈ MMDP ⇒
pξ is, in general, not a stationary policy.

• There are self-optimizing policies for the class of ergodic MDPs for

the average value Vν , and for the future value Vkγ if γk+1

γk
→ 1.

• Hence Theorems 9.5 and 9.6 imply that pξ is self-optimizing for

ergodic MDPs (if γk+1

γk
→ 1).

• γk+1

γk
→ 1 for γk = 1/k2, but not for γk = γk.

• Fazit: Condition γk+1

γk
→ 1 admits self-optimizing Bayesian policies.
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General Discounting

• Future rewards give only small contribution to Vkγ

⇒ effective horizon.

• The only significant arbitrariness in the AIXI model lies in the

choice of the horizon.

• Power damping γk = k−1−ε leads to horizon proportional to age k

of agent.

It does not introduce arbitrary time-scale and has natural/plausible

horizon.

• Universal discount γk = 2−K(k) leads to largest possible horizon.

Allows to “mimic” all other more greedy behaviors based on other

discounts.
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Effective Horizon

Table 9.10 (Effective horizon)

heffk := min{h ≥ 0 : Γk+h ≤ 1
2Γk} for various types of discounts γk

Horizons γk Γk =
∑∞

i=k γi heffk

finite 1 for k≤m
0 for k>m m− k + 1 1

2 (m− k + 1)

geometric γk, 0 ≤ γ < 1 γk

1−γ
ln 2

ln γ−1

quadratic 1
k(k+1)

1
k k

power k−1−ε, ε > 0 ∼ 1
εk

−ε ∼ (21/ε − 1)k

harmonic≈
1

k ln2 k
∼ 1

ln k ∼ k2

universal 2−K(k)
decreases slower

than any com-

putable function

increases faster than

any computable func-

tion
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Other Attempts to Deal with Horizon Issue
• Finite horizon:
- good if known,
- bad if unknown and for asymptotic analysis.

• Infinite horizon:
- Limit may not exist.
- can delay exploitation indefinitely,
since no finite exploration decreases value.

- immortal agents can be lazy.

• Average reward and differential gain:
- limit may not exist.

• Moving horizon mk:
- can lead to very bad time-inconsistent behavior.

• Time-inconsistent discounting ...
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Time(In)Consistent Discounting

• Generalize V πρ
kγ ≡ 1

Γk
Eπρ[

∑∞
t=k γtrt] to:

Potentially different discount sequence dk1 , d
k
2 , d

k
3 , ... for different k:

Value V πρ
kγ := Eπρ[

∑∞
t=k d

k
t rt]

• Leads in general to time-inconsistency,

i.e. π∗
k := argmaxπ V

πρ
kγ depends on k.

• Consequence: Agent plans to do one thing,

but then changes its mind.

Can in general lead to very bad behavior.

• Humans seem to behave time-inconsistently.

Solution: Pre-commitment strategies.
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Time(In)Consistent Discounting (ctd)

Time-consistent examples: dkt = γt−k geometric discounting.

Is the only time-invariant consistent discounting

Time-inconsistent example: dkt = (t− k + 1)−1−ε (≈humans)

Theorem 9.11 (Time(In)Consistent Discounting) [LH11]

dkt is time-consistent ⇐⇒ dk() ∝ d1() for all k.

What to do if you know you’re time inconsistent?

Treat your future selves as opponents in an extensive game and follow

sub-game perfect equilibrium policy.
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9.3 Optimistic and Knowledge-Seeking

Variations of AIξ: Contents

• Universal Knowledge-Seeking Agent

• Optimistic Agents in Deterministic Worlds

• Optimistic Agents for General Environments

• Optimism in MDPs
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Universal Knowledge-Seeking Agent (KSA)
reward for exploration; goal is to learn the true environment [OLH13]

• wν
k := wν

ν(x<k|y<k)
ξ(x<k|y<k)

is the posterior belief in ν given history yx<k.

• w
()
k summarizes the information contained in history yx<k.

• w
()
k ; w

()
k+1 changes ⇔ xk given yx<k is informative about ν∈M

• Information gain can be quantified by KL-divergence.

• Reward agent for gained information:

rk := KL(w
()
k+1||w

()
k ) ≡

∑
ν∈M wν

k+1 log(w
ν
k+1/w

ν
k)
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Asymptotic Optimality of Universal KSA

Theorem 9.12 (Asymptotic Optimality of Universal KSA)

• Universal π∗
ξ converges to optimal π∗

µ. More formally:

• Pπ
ξ (·|yx<k) converges in (µ, π∗

ξ )-probability to Pπ
µ (·|yx<k)

uniformly for all π.

Def: Pπ
ρ (·|yx<k) is (ρ, π)-probability of future yxk:∞ given past yx<k.

Note: On-policy agent π∗
ξ is able to even predict off-policy!

Remark: No assumption on M needed, i.e. Thm. applicable to MU .



Theory of Rational Agents - 296 - Marcus Hutter

Optimistic Agents in Deterministic Worlds
act optimally w.r.t. the most optimistic environment

until it is contradicted [SH12]

• π◦ := π∗
k := argmaxπ maxν∈Mk−1

V πν
kγ (yx<k)

• Mk−1 := environments consistent with history yx<k.

• As long as the outcome is consistent with the optimistic prediction,

the return is optimal, even if the wrong environment is chosen.

Theorem 9.13 (Optimism is asymptotically optimal)

For finite M ≡ M0,

• Asymptotic: V π◦µ
kγ = V ∗µ

kγ for all large k.

• Errors: For geometric discount, V π◦µ
kγ ≥ V ∗µ

kγ − ε (i.e. π◦ ε-sub-

optimal) for all but at most |M| log ε(1−γ)
log γ time steps k.
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Optimistic Agents for General Environments
• Generalization to stochastic environments: Likelihood criterion:
Exclude ν from Mk−1 if ν(x<k|y<k) < εk ·max

ν∈M
ν(x<k|y<k). [SH12]

• Generalization to compact classes M:
Replace M by centers of finite ε-cover of M in def. of π◦. [SH12]

• Use decreasing εk → 0 to get self-optimizingness.

• There are non-compact classes for which self-optimizingness is
impossible to achieve. [Ors10]

• Weaker self-optimizingness in Cesaro sense possible
by starting with finite subset M0 ⊂ M
and adding environments ν from M over time to Mk. [SH15]

• Fazit: There exist (weakly) self-optimizing policies for arbitrary
(separable) /compact M.



Theory of Rational Agents - 298 - Marcus Hutter

Optimism in MDPs

• Let M be the class of all MDPs with |S| <∞ states and |A| <∞
actions and geometric discount γ.

• Then M is continuous but compact

=⇒ π◦ is self-optimizing by previous slide.

• But much better polynomial error bounds in this case possible:

Theorem 9.14 (PACMDP bound) V π◦µ
kγ ≤ V ∗µ

kγ − ε for at most

Õ( |S|2|A|
ε2(1−γ)3 log

1
δ ) time steps k with probability 1− δ. [LH12]



Theory of Rational Agents - 299 - Marcus Hutter

9.4 Discussion: Contents

• Summary

• Exercises

• Literature
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Summary - Bayesian Agents

• Setup: Agents acting in general probabilistic environments with

reinforcement feedback.

• Assumptions: True environment µ belongs to a known class of

environments M, but is otherwise unknown.

• Results: The Bayes-optimal policy pξ based on the Bayes-mixture

ξ =
∑

ν∈M wνν is Pareto-optimal and self-optimizing if M admits

self-optimizing policies.

• Application: The class of ergodic mdps admits self-optimizing

policies.
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Summary - Discounting

• Discounting: Considering future values and the right discounting γ

leads to more meaningful agents and results.

• Learn: The combined conditions Γk <∞ and γk+1

γk
→ 1 allow a

consistent self-optimizing Bayes-optimal policy based on mixtures.

• In particular: Policy pξ with unbounded effective horizon is the first

purely Bayesian self-optimizing consistent policy for ergodic MDPs.

• Wrong discounting leads to myopic or time-inconsistent policies

(bad).
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Summary - Variations of AIξ

• Use information gain as a universal choice for the rewards.

AIξ becomes purely knowledge seeking.

• Real world has traps

=⇒ no self-optimizing policy

=⇒ need more explorative policies and weaker criteria like ...

• Optimistic agents: Act optimally w.r.t. the most optimistic

environment until it is contradicted.



Theory of Rational Agents - 303 - Marcus Hutter

Exercises

1. [C15] Prove Pareto-optimality of pξ.

2. [C35] Prove Theorem 9.7 (Continuity of discounted value).

3. [C35] Prove Theorem 9.8 (Convergence of universal to true value).

4. [C15ui] Solve [Hut05, Problem 5.2]

(Absorbing two-state environment)

5. [C25u] Derive the expressions for the effective horizons in Table

9.10.

6. [C30ui] Solve [Hut05, Problem 5.11] (Belief contamination)

7. [C20u] Solve [Hut05, Problem 5.16] (Effect of discounting)
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10 APPROXIMATIONS & APPLICATIONS

• Universal Search

• The Fastest Algorithm (FastPrg)

• Time-Bounded AIXI Model (AIXItl)

• Brute-Force Approximation of AIXI (AIξ)

• A Monte-Carlo AIXI Approximation (MC-AIXI-CTW)

• Feature Reinforcement Learning (ΦMDP)
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Approximations & Applications: Abstract
Many fundamental theories have to be approximated for practical use.
Since the core quantities of universal induction and universal intelligence
are incomputable, it is often hard, but not impossible, to approximate
them. In any case, having these “gold standards” to approximate
(top→down) or to aim at (bottom→up) is extremely helpful in building
truly intelligent systems. A couple of universal search algorithms
((adaptive) Levin search, FastPrg, OOPS, Gödel-machine, ...) that find
short programs have been developed and applied to a variety of toy
problem. The AIXI model itself has been approximated in a couple of
ways (AIXItl, Brute Force, Monte Carlo, Feature RL). Some recent
applications will be presented.
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Towards Practical Universal AI

Goal: Develop efficient general-purpose intelligent agent

• Additional Ingredients: Main Reference (year)

• Universal search: Schmidhuber (200X) & al.

• Learning: TD/RL Sutton & Barto (1998) & al.

• Information: MML/MDL Wallace, Rissanen

• Complexity/Similarity: Li & Vitanyi (2008)

• Optimization: Aarts & Lenstra (1997)

• Monte Carlo: Fishman (2003), Liu (2002)
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10.1 Universal Search: Contents

• Blum’s Speed-up Theorem and Levin’s Theorem.

• The Fastest Algorithm Mp∗ .

• Applicability of Levin Search and Mp∗ .

• Time Analysis of Mp∗ .

• Extension of Kolmogorov Complexity to Functions.

• The Fastest and Shortest Algorithm.

• Generalizations.

• Summary & Outlook.
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Introduction

• Searching for fast algorithms to solve certain problems is a central

and difficult task in computer science.

• Positive results usually come from explicit constructions of efficient

algorithms for specific problem classes.

• A wide class of problems can be phrased in the following way:

• Find a fast algorithm computing f :X→Y , where f is a formal

specification of the problem depending on some parameter x.

• The specification can be formal (logical, mathematical),

it need not necessarily be algorithmic.

• Ideally, we would like to have the fastest algorithm, maybe apart

from some small constant factor in computation time.
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Blum’s Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of

speed-improving algorithms (of increasing size) exists, but no fastest

algorithm.

[Blum, 1967, 1971]

Levin’s Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to

invert a function g :Y →X, if g can be evaluated quickly.

[Levin 1973]
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Simple is as fast as Search
• simple: run all programs p1p2p3 . . . on x one step at a time

according to the following scheme: p1 is run every second step, p2
every second step in the remaining unused steps, ... if g(pk(x)) = x,

then output pk(x) and halt ⇒ timeSIMPLE(x) ≤ 2ktime+pk
(x) + 2k−1.

• search: run all p of length less than i for ⌊2i2−l(p)⌋ steps in phase

i = 1, 2, 3, . . .. timeSEARCH(x) ≤ 2K(k)+O(1)time+pk
(x), K(k) ≪ k.

• Refined analysis: search itself is an algorithm with some index

kSEARCH =O(1)

=⇒ simple executes search every 2kSEARCH -th step

=⇒ timeSIMPLE(x) ≤ 2kSEARCHtime+SEARCH(x)

=⇒ simple and search have the same asymptotics also in k.

• Practice: search should be favored because the constant 2kSEARCH

is rather large.
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Bound for The Fast Algorithm Mp∗

• Let p∗ :X→Y be a given algorithm or specification.

• Let p be any algorithm, computing provably the same function as p∗

• with computation time provably bounded by the function tp(x).

• timetp(x) is the time needed to compute the time bound tp(x).

• Then the algorithm Mp∗ computes p∗(x) in time

timeMp∗ (x) ≤ 5·tp(x) + dp ·timetp(x) + cp

• with constants cp and dp depending on p but not on x.

• Neither p, tp, nor the proofs need to be known in advance for the

construction of Mp∗(x).
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Applicability
• Prime factorization, graph coloring, truth assignments, ... are Problems

suitable for Levin search, if we want to find a solution, since verification is
quick.

• Levin search cannot decide the corresponding decision problems.

• Levin search cannot speedup matrix multiplication, since there is no
faster method to verify a product than to calculate it.

• Strassen’s algorithm p′ for n×n matrix multiplication has time
complexity timep′(x) ≤ tp′(x) := c·n2.81.

• The time-bound function (cast to an integer) can, as in many cases, be

computed very fast, timetp′ (x) = O(log2 n).

• Hence, also Mp∗ is fast, timeMp∗ (x) ≤ 5c·n2.81 +O(log2 n), even

without known Strassen’s algorithm.

• If there exists an algorithm p′′ with timep′′(x) ≤ d·n2 log n, for instance,

then we would have timeMp∗ (x) ≤ 5d·n2 log n+O(1).

• Problems: Large constants c, cp, dp.
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The Fast Algorithm Mp∗

Mp∗(x)

Initialize the shared variables

L := {}, tfast := ∞, pfast := p∗.

Start algorithms A, B, and C

in parallel with 10%, 10% and 80%

computational resources, respectively.

A

Run through all proofs.

if a proof proves for some (p, t) that

p(·) is equivalent to (computes) p∗(·)
and has time-bound t(·)
then add (p, t) to L.

B

Compute all t(x) in parallel

for all (p, t)∈L with

relative computation time 2−ℓ(p)−ℓ(t).

if for some t, t(x)<tfast,

then tfast := t(x) and pfast := p.

continue

C

for k:=1,2,4,8,16,32,... do

run current pfast for k steps

(without switching).

if pfast halts in less than k steps,

then print result and abort A, B and C.

else continue with next k.
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Fictitious Sample Execution of Mp∗

1 2 4
p314

16

p3

t42

t100

t314

t3

ttotal

p3p*p*

p100

p42

p314

t

Mp* stopsp42

8

p9

t9

content of shared variable tfa  st

time-bound for    executed byp C

number of executed steps of    inp C

guaranteed stopping point
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Time Analysis

TA ≤ 1

10%
·2ℓ(proof(p

′))+1 ·O(ℓ(proof(p′))2)

TB ≤ TA +
1

10%
·2ℓ(p

′)+ℓ(tp′ ) ·timetp′ (x)

TC ≤

 4TB if C stops not using p′ but on some earlier program

1
80%4tp′ if C computes p′.

timeMp∗ (x) = TC ≤ 5·tp(x) + dp ·timetp(x) + cp

dp = 40·2ℓ(p)+ℓ(tp), cp = 40·2ℓ(proof(p))+1 ·O(ℓ(proof(p)2)
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Kolmogorov Complexity

Kolmogorov Complexity is a universal notion of the information content

of a string. It is defined as the length of the shortest program

computing string x.

K(x) := min
p

{ℓ(p) : U(p) = x}

[Kolmogorov 1965 and others]

Universal Complexity of a Function

The length of the shortest program provably equivalent to p∗

K ′′(p∗) := min
p

{ℓ(p) : a proof of [∀y :u(p, y) = u(p∗, y)] exists}

[Hut02]

K and K ′′ can be approximated from above (are co-enumerable), but

not finitely computable. The provability constraint is important.
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The Fastest and Shortest Algorithm for p∗

Let p∗ be a given algorithm or formal specification of a function.

There exists a program p̃, equivalent to p∗, for which the following holds

i) ℓ(p̃) ≤ K ′′(p∗) +O(1)

ii) timep̃(x) ≤ 5·tp(x) + dp ·timetp(x) + cp

where p is any program provably equivalent to p∗ with computation

time provably less than tp(x). The constants cp and dp depend on p but

not on x. [Hut02]

Proof

Insert the shortest algorithm p′ provably equivalent to p∗ into M , that is

p̃ :=Mp′ ⇒ l(p̃) = ℓ(p′)+O(1) = K ′′(p∗)+O(1).
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Generalizations

• If p∗ has to be evaluated repeatedly, algorithm A can be modified

to remember its current state and continue operation for the next

input (A is independent of x!). The large offset time cp is only

needed on the first call.

• Mp∗ can be modified to handle i/o streams, definable by a Turing

machine with monotone input and output tapes (and bidirectional

working tapes) receiving an input stream and producing an output

stream.

• The construction above also works if time is measured in terms of

the current output rather than the current input x (e.g. for

computing π).
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Summary

• Under certain provability constraints, Mp∗ is the asymptotically

fastest algorithm for computing p∗ apart from a factor 5 in

computation time.

• The fastest program computing a certain function is also among the

shortest programs provably computing this function.

• To quantify this statement we defined a novel natural measure for

the complexity of a function, related to Kolmogorov complexity.

• The large constants cp and dp seem to spoil a direct

implementation of Mp∗ .

• On the other hand, Levin search has been successfully extended and

applied even though it suffers from a large multiplicative factor

[Schmidhuber 1996-2004].
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Outlook

• More elaborate theorem-provers could lead to smaller constants.

• Transparent or holographic proofs allow under certain circumstances

an exponential speed up for checking proofs. [Babai et al. 1991]

• Will the ultimate search for asymptotically fastest programs typically

lead to fast or slow programs for arguments of practical size?
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10.2 Approximations & Applications of

AIXI: Contents

• Time-Bounded AIXI Model (AIXItl)

(theoretical guarantee)

• Brute-Force Approximation of AIXI (AIξ)

(application to 2×2 matrix games)

• A Monte-Carlo AIXI Approximation (MC-AIXI-CTW)

(application to mazes, tic-tac-toe, pacman, poker)
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Computational Issues

• If X , Y, m, M finite, then ξ and pξ (theoretically) computable.

• ξ and hence pξ incomputable for infinite M, as for Solomonoff’s

prior ξU .

• Computable approximations to ξU :

Time bounded Kolmogorov complexity Kt or Kt.

Time bounded universal prior like speed prior S [Schmidhuber:02].

• Even for efficient approximation of ξU , exponential (in m) time is

needed for evaluating the expectimax tree in V ∗
ξ .

• Additionally perform Levin search through policy space,

similarly to OOPS+AIXI [Schmidhuber:02].

• Approximate V ∗
ξ directly: AIXItl [Hutter:00].
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Computability and Monkeys

SPξ and AIξ are not really uncomputable (as often stated) but ...

ẏAIξ
k is only asymptotically computable/approximable with slowest

possible convergence.

Idea of the typing monkeys:

• Let enough monkeys type on typewriters or computers, eventually

one of them will write Shakespeare or an AI program.

• To pick the right monkey by hand is cheating, as then the

intelligence of the selector is added.

• Problem: How to (algorithmically) select the right monkey.
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The Time-bounded AIXI Model

• Let p be any (extended chronological self-evaluating) policy

• with length ℓ(p)≤ l and computation time per cycle t(p)≤ t
• for which there exists a proof of length ≤ lP that p is a valid

approximation of (not overestimating) its true value V p
M ≡ Υ(p).

• AIXItl selects such p with highest self-evaluation.

Optimality of AIXItl

• AIXItl depends on l,t and lP but not on knowing p.

• It is effectively more or equally intelligent

w.r.t. intelligence order relation ≽c than any such p.

• Its size is ℓ(pbest)=O(log(l·t·lP )).
• Its setup-time is tsetup(p

best)=O(l2P ·2lP ).
• Its computation time per cycle is tcycle(p

best)=O(2l ·t).
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Outook

• Adaptive Levin-Search (Schmidhuber 1997)

• The Optimal Ordered Problem Solver (Schmidhuber 2004) (has

been successfully applied to Mazes, towers of hanoi, robotics, ...)

• The Gödel Machine (Schmidhuber 2007)

• Related fields: Inductive Programming
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Brute-Force Approximation of AIXI

• Truncate expectimax tree depth to a small fixed lookahead h.

Optimal action computable in time |Y×X |h× time to evaluate ξ.

• Consider mixture over Markov Decision Processes (MDP) only, i.e.

ξ(x1:m|y1:m) =
∑

ν∈M wν

∏m
t=1 ν(xt|xt−1yt). Note: ξ is not MDP

• Choose uniform prior over wµ.

Then ξ(x1:m|y1:m) can be computed in linear time.

• Consider (approximately) Markov problems

with very small action and perception space.

• Example application: 2×2 Matrix Games like Prisoner’s Dilemma,

Stag Hunt, Chicken, Battle of Sexes, and Matching Pennies. [PH06]
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AIXI Learns to Play 2×2 Matrix Games

• Repeated prisoners dilemma. Loss matrix

• Game unknown to AIXI.

Must be learned as well

• AIXI behaves appropriately.
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A Monte-Carlo AIXI Approximation
Consider class of Variable-Order Markov Decision Processes.

The Context Tree Weighting (CTW) algorithm can efficiently mix

(exactly in essentially linear time) all prediction suffix trees.

Monte-Carlo approximation of expectimax tree:

Upper Confidence Tree (UCT) algorithm:

• Sample observations from CTW distribution.

• Select actions with highest upper confidence bound.

• Expand tree by one leaf node (per trajectory).

a1
a2 a3

o1 o2 o3 o4

future reward estimate

• Simulate from leaf node further down using (fixed) playout policy.

• Propagate back the value estimates for each node.

Repeat until timeout. [VNH+11]

Guaranteed to converge to exact value.

Extension: Predicate CTW not based on raw obs. but features thereof.
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Monte-Carlo AIXI Applications
without providing any domain knowledge, the same agent is

able to self-adapt to a diverse range of interactive environments.
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Extensions of MC-AIXI-CTW [VSH12]
• Smarter than random playout policy, e.g. learnt CTW policy.

• Extend the model class to improve general prediction ability.
However, not so easy to do this in a comput. efficient manner.

• Predicate CTW: Context is vector of (general or problem-specific)
predicate=feature=attribute values.

• Convex Mixing of predictive distributions.
Competitive guarantee with respect to the best fixed set of weights.

• Switching: Enlarge base class by allowing switching between distr.
Can compete with best rarely changing sequence of models.

• Improve underlying KT Est.: Adaptive KT, Window KT, KT0, SAD

• Partition Tree Weighting technique for piecewise stationary sources
with breaks at/from a binary tree hierarchy.

• Mixtures of factored models such as quad-trees for images [GBVB13]

• Avoid expensive MCTS by direct compression-based value
estimation. [VBH+15]
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10.3 Feature Reinforcement Learning:

Contents

• Markov Decision Processes (MDPs)

• The Main Idea: Map Real Problem to MDP

• Criterion to Evaluate/Find/Learn Map the Automatically

• Algorithm & Results
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Feature Reinforcement Learning (FRL)

Goal: Develop efficient general purpose intelligent agent. [Hut09b]

State-of-the-art: (a) AIXI: Incomputable theoretical solution.

(b) MDP: Efficient limited problem class.

(c) POMDP: Notoriously difficult. (d) PSRs: Underdeveloped.

Idea: ΦMDP reduces real problem to MDP automatically by learning.

Accomplishments so far: (i) Criterion for evaluating quality of reduction.

(ii) Integration of the various parts into one learning algorithm. [Hut09c]

(iii) Generalization to structured MDPs (DBNs). [Hut09a]

(iv) Theoretical and experimental investigation. [SH10, DSH12, Ngu13]

ΦMDP is promising path towards the grand goal & alternative to (a)-(d)

Problem: Find reduction Φ efficiently (generic optimization problem?)
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Markov Decision Processes (MDPs)
a computationally tractable class of problems

• MDP Assumption: State st := ot and rt are

probabilistic functions of ot−1 and at−1 only.

Example MDP�
��
s1

r1

��-
�
��
s2

r4 ���

�
��
s3 r2

�
��
s4r3

-

?
�

6
�

���
��	• Further Assumption:

State=observation space S is finite and small.

• Goal: Maximize long-term expected reward.

• Learning: Probability distribution is unknown but can be learned.

• Exploration: Optimal exploration is intractable

but there are polynomial approximations.

• Problem: Real problems are not of this simple form.
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Map Real Problem to MDP
Map history ht := o1a1r1...ot−1 to state st := Φ(ht), for example:

Games: Full-information with static opponent: Φ(ht) = ot.

Classical physics: Position+velocity of objects = position at two

time-slices: st = Φ(ht) = otot−1 is (2nd order) Markov.

I.i.d. processes of unknown probability (e.g. clinical trials ≃ Bandits),

Frequency of obs. Φ(hn) = (
∑n

t=1 δoto)o∈O is sufficient statistic.

Identity: Φ(h) = h is always sufficient, but not learnable.

Find/Learn Map Automatically
Φbest := argminΦ Cost(Φ|ht)

• What is the best map/MDP? (i.e. what is the right Cost criterion?)

• Is the best MDP good enough? (i.e. is reduction always possible?)

• How to find the map Φ (i.e. minimize Cost) efficiently?



Approximations & Applications - 336 - Marcus Hutter

ΦMDP: Computational Flow
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ΦMDP Results

• Theoretical guarantees: Asymptotic consistency. [SH10]

• Example Φ-class: As Φ choose class of suffix trees as in CTW.

• How to find/approximate Φbest:

- Exhaustive search for toy problems [Ngu13]

- Monte-Carlo (Metropolis-Hastings / Simulated Annealing)

for approximate solution [NSH11]

- Exact “closed-form” by CTM similar to CTW [NSH12]

• Experimental results: Comparable to MC-AIXI-CTW [NSH12]

• Extensions:

- Looping suffix trees for long-term memory [DSH12]

- Structured/Factored MDPs (Dynamic Bayesian Networks) [Hut09a]
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11 DISCUSSION

• What has been achieved?

• Universal AI in perspective

• Miscellaneous considerations

• Outlook and open questions

• Philosophical issues
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Discussion: Abstract

The course concludes by critically reviewing what has been achieved and

discusses some otherwise unmentioned topics of general interest. We

summarize the AIXI model and compare various learning algorithms

along various dimensions. We continue with an outlook on further

research. Furthermore, we collect and state all explicit or implicit

assumptions, problems and limitations of AIXI(tl).

The dream of creating artificial devices that reach or outperform human

intelligence is an old one, so naturally many philosophical questions have

been raised: weak/strong AI, Gödel arguments, the mind-body and the

free will problem, consciousness, and various thought experiments.

Furthermore, the Turing test, the (non)existence of objective

probabilities, non-computable physics, the number of wisdom, and

finally ethics, opportunities, and risks of AI are briefly discussed.
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11.1 What has been Achieved:

Contents

• Recap of Universal AI and AIXI

• Involved Research Fields

• Overall and Major Achievements
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Overall Achievement

• Developed the mathematical foundations of artificial intelligence.

• Developed a theory for rational agents

acting optimally in any environment.

• This was not an easy task since intelligence has many

(often ill-defined) facets.
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Universal Artificial Intelligence (AIXI)
|| ||

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Involved Scientific Areas

• reinforcement learning • adaptive control theory

• information theory • Solomonoff induction

• theory of computation • Kolmogorov complexity

• Bayesian statistics • Universal search

• sequential decision theory • and many more
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The AIXI Model in one Line
complete & essentially unique & limit-computable

AIXI: ak := argmax
ak

∑
okrk

...max
am

∑
omrm

[rk + ...+ rm]
∑

p :U(p,a1..am)=o1r1..omrm

2−ℓ(p)

action, reward, observation, Universal TM, program, k=now

AIXI is an elegant mathematical theory of AI

Claim: AIXI is the most intelligent environmental independent, i.e.

universally optimal, agent possible.

Proof: For formalizations, quantifications, and proofs, see [Hut05].

Applications: Robots, Agents, Games, Optimization, Supervised

Learning, Sequence Prediction, Classification, ...
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Issues in AI and how UAI solves them

Kolmogorov complexity:

• generalization

• associative learning

• transfer learning [Mah09]

• knowledge representation

• abstraction

• similarity [CV05]

• regularization, bias-variance [Wal05]

Bayes:

• exploration-exploitation

• learning

History-based:

• partial observability

• non-stationarity

• long-term memory

• large state space

Expectimax:

• planning

UAI deals with these issues in a general and optimal way
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Major Achievements 1
Philosophical & mathematical & computational

foundations of universal induction based on

• Occam’s razor principle,

• Epicurus’ principle of multiple explanations,

• subjective versus objective probabilities,

• Cox’s axioms for beliefs,

• Kolmogorov’s axioms of probability,

• conditional probability and Bayes’ rule,

• Turing machines,

• Kolmogorov complexity,

• culminating in universal Solomonoff induction.
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Major Achievements 2
Miscellaneous

• Convergence and optimality results

for (universal) Bayesian sequence prediction.

• Sequential decision theory in a very general form in which actions

and perceptions may depend on arbitrary past events (AIµ).

• Kolmogorov complexity with approximations (MDL) and

applications to clustering via the Universal Similarity Metric.

• Universal intelligence measure and order relation regarding which

AIXI is the most intelligent agent.
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Major Achievements 3
Universal Artificial Intelligence (AIXI)

• Unification of sequential decision theory and Solomonoff’s theory of

universal induction, both optimal in their own domain, to the

optimal universally intelligent agent AIXI.

• Categorization of environments.

• Universal discounting and choice of the horizon

• AIXI/AIξ is self-optimizing and Pareto optimal

• AIXI can deal with a number of important problem classes,

including sequence prediction, strategic games, function

minimization, and supervised learning.
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Major Achievements 4
Approximations & Applications

• Universal search: Levin search, FastPrg, OOPS, Gödel machine, ...

• Approximations: AIXItl, AIξ, MC-AIXI-CTW, ΦMDP.

• Applications: Prisoners Dilemma and other 2×2 matrix games, Toy

Mazes, TicTacToe, Rock-Paper-Scissors, Pacman, Kuhn-Poker, ...

• Fazit: Achievements 1-4 show that artificial intelligence can be

framed by an elegant mathematical theory. Some progress has also

been made toward an elegant computational theory of intelligence.
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11.2 Universal AI in Perspective:

Contents

• Aspects of AI included in AIXI

• Emergent Properties of AIXI

• Intelligent Agents in Perspective

• Properties of Learning Algorithms

• Machine Intelligence Tests & Definitions

• Common Criticisms

• General Murky & Quirky AI Questions
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Connection to (AI) SubFields
• Agents: The UAIs (AIXI,ΦMDP,...) are (single) agents.

• Utility theory: goal-oriented agent.

• Probability theory: to deal with uncertain environment.

• Decision theory: agent that maximizes utility/reward.

• Planning: in expectimax tree and large DBNs.

• Information Theory: Core in defining and analyzing UAIs.

• Reinforcement Learning: via Bayes-mixture and PAC-MDP to deal with
unknown world.

• Knowledge Representation: In compressed history and features Φ.

• Reasoning: To improve compression/planning/search/... algorithms.

• Logic: For proofs in AIXItl and soph. features in ΦDBN.

• Complexity Theory: In AIXItl and PAC-MDP. We need poly-time and
ultimately linear-time approx. algorithms for all building blocks.

• Heuristic Search & Optimization: Approximating Solomonoff by
compressing history, and minimizing Cost(Φ,Structure|h)

• Interfaces: Robotics, Vision, Language: In theory learnable from scratch.
In practice engineered pre-&post-processing.
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Aspects of Intelligence
are all(?) either directly included in AIXI or are emergent

Trait of Intell. How included in AIXI
reasoning to improve internal algorithms (emergent)
creativity exploration bonus, randomization, ...
association for co-compression of similar observations
generalization for compression of regularities
pattern recognition in perceptions for compression
problem solving how to get more reward
memorization storing historic perceptions
planning searching the expectimax tree
achieving goals by optimal sequential decisions
learning Bayes-mixture and PAC-MDP
optimization compression and expectimax (Cost() in ΦMDP)
self-preservation by coupling reward to robot components
vision observation=camera image (emergent)
language observation/action = audio-signal (emergent)
motor skills action = movement (emergent)
classification by compression (partition from Φ in ΦMDP)
induction Universal Bayesian posterior (Ockham’s razor)
deduction Correctness proofs in AIXItl
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Other Aspects of the Human Mind

• Conciousness

• Self-awareness

• Sentience

• Emotions

If these qualia are relevant for rational decision making,

then they should be emergent traits of AIXI too.
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Issues in RL and how AIXI solves them

Kolmogorov complexity:

• generalization

• associative learning

• transfer learning [Mah09]

• knowledge representation

• abstraction

• similarity [CV05]

• regularization, bias-variance [Wal05]

Bayes:

• exploration-exploitation

• learning

History-based:

• partial observability

• non-stationarity

• long-term memory

• large state space

Expectimax:

• planning

AIXI deals with these issues in a general and optimal way
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Properties of Learning Algorithms
Comparison of AIXI to Other Approaches
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Value/Policy iteration yes/no yes – YES YES NO NO NO yes
TD w. func.approx. no/yes NO NO no/yes NO YES NO YES YES
Direct Policy Search no/yes YES NO no/yes NO YES no YES YES

Logic Planners yes/no YES yes YES YES no no YES yes
RL with Split Trees yes YES no YES NO yes YES YES YES
Pred.w. Expert Advice yes/no YES – YES yes/no yes NO YES NO
OOPS yes/no no – yes yes/no YES YES YES YES
Market/Economy RL yes/no no NO no no/yes yes yes/no YES YES

SPXI no YES – YES YES YES NO YES NO
AIXI NO YES YES yes YES YES YES YES YES
AIXItl no/yes YES YES YES yes YES YES YES YES
MC-AIXI-CTW yes/no yes YES YES yes NO yes/no YES YES
Feature RL yes/no YES yes yes yes yes yes YES YES
Human yes yes yes no/yes NO YES YES YES YES
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Machine Intelligence Tests & Definitions

⋆= yes, ·= no,

•= debatable,

? = unknown.
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Text Compression Test • ⋆ ⋆ • · • • ⋆ ⋆ ⋆ • ⋆ T

Turing Ratio • ⋆ ⋆ ⋆ ? ? ? ? ? · ? ? T/D

Psychometric AI ⋆ ⋆ • ⋆ ? • · • • • · • T/D

Smith’s Test • ⋆ ⋆ • · ? ⋆ ⋆ ⋆ · ? • T/D

C-Test • ⋆ ⋆ • · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ T/D

Universal Υ(π), AIXI ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · D
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Common Criticisms

• AIXI is obviously wrong.
(intelligence cannot be captured in a few simple equations)

• AIXI is obviously correct. (everybody already knows this)

• Assuming that the environment is computable is too strong.

• All standard objections to strong AI also apply to AIXI.
(free will, lookup table, Lucas/Penrose Gödel argument)

• AIXI doesn’t deal with X or cannot do X.
(X = consciousness, creativity, imagination, emotion, love, soul, etc.)

• AIXI is not intelligent because it cannot choose its goals.

• Universal AI is impossible due to the No-Free-Lunch theorem.

See [Leg08] for refutations of these and more criticisms.
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General Murky & Quirky AI Questions

• Is current mainstream AI research relevant for AGI?

• Are sequential decision and algorithmic probability theory

all we need to well-define AI?

• What is (Universal) AI theory good for?

• What are robots good for in AI?

• Is intelligence a fundamentally simple concept?

(compare with fractals or physics theories)

• What can we (not) expect from super-intelligent agents?

• Is maximizing the expected reward the right criterion?

• Isn’t universal learning impossible due to the NFL theorems?
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11.3 Miscellaneous Considerations:

Contents

• Game Theory and Simultaneous Actions

• Input/Output Spaces

• Specific/Universal/Generic Prior Knowledge

• How AIXI(tl) Deals with Encrypted Information

• Origin of Rewards and Universal Goals

• Mortal Embodied (AIXI) Agent

• Some more Social Questions

• Creativity – An Algorithmic View

• Is Intelligence Simple or Complex?
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Game Theory and Simultaneous Actions

Game theory often considers simultaneous actions of both players

(e.g. 2×2 matrix games) (agent and environment in our terminology).

Our approach can simulate this by withholding the environment from

the current agent’s output yk, until xk has been received by the agent.

Input/Output Spaces

• In our examples: specialized input and output spaces X and Y.

• In principle: Generic interface, e.g. high-resolution camera / monitor

/ actuators, but then complex vision and control behavior has to be

learnt too (e.g. recognizing and drawing TicTacToe boards).

• In theory: Any interface can be Turing-reduced to binary X and Y
by sequentializing, or embedded into X = Y = N.
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Prior Knowledge — Specific Solutions

For specific practical problems we usually have extra information about

the problem at hand, which could and should be used to guide the

forecasting and decisions.

Ways of incorporating prior knowledge:

• Restrict Bayesian mixture ξU from all computable environments to

those not contradicting our prior knowledge, or soft version:

• Bias weights weights wν towards environments that are more likely

according to our prior knowledge.

Both can be difficult to realize, since one often has only an informal

description of prior facts.
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Prior Knowledge — Universal Solution

• Code all prior knowledge in one long binary string d1:ℓ

(e.g. a dump of Wikipedia, see H-prize) essentially in any format.

• Provide d1:ℓ as first (sequence of) observation to AIXI/Solomonoff,

i.e. prefix actual observation x<n with d1:ℓ.

• This also allows to predict short sequences reliably

(insensitive to choice of UTM).

• This is also how humans are able to agree on predictions based on

apparently little data, e.g. 1,1,1,1,1,1,?

• Humans can make non-arbitrary predictions given a short sequence

x<n only iff M(xn|d1:ℓx<n) leads to essentially the same prediction

for all “reasonable” universal Turing machines U .
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Universal=Generic Prior Knowledge
• Problem 1: Higher-level knowledge is never 100% sure.
⇒ No environment (except those inconsistent with bare
observations) can be ruled out categorically
(The world may change completely tomorrow).

• Problem 2: Env. µ does not describe the total universe, but only a
small fraction, from the subjective perspective of the agent.

• Problem 3: Generic properties of the universe like locality,
continuity, or the existence of manipulable objects with properties
and relations in a manifold may be distorted due to the subjective
perspective.

• Problem 4: Known generic properties only constitute information of
size O(1) and do not help much in theory (but might in practice).

• On the other hand, the scientific approach is to simply assume some
properties (whether true in real life or not) and analyze the
performance of the resulting models.
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How AIXI(tl) Deals with Encrypted Information

• De&en-cryption are bijective functions of complexity O(1), and

Kolmogorov complexity is invariant under such transformations

⇒ AIXI is immune to encryption. Due its unlimited computational

resources it can crack any encryption.

• This shows that in general it does not matter how information is

presented to AIXI.

• But any time-bounded approximation like AIXItl will degrade under

hard-to-invert encodings.



Discussion - 366 - Marcus Hutter

Origin of Rewards and Universal Goals

• Where do rewards come from if we don’t (want to) provide them.

• Human interaction: reward the robot according to how well it solves

the tasks we want it to do.

• Autonomous: Hard-wire reward to predefined task:

E.g. Mars robot: reward = battery level & evidence of water/life.

• Is there something like a universal goal?

• Curiosity-driven learning [Sch07]

• Knowledge seeking agents [Ors11, OLH13]

• Universal (instrumental) values: survival, spreading, information,

rationality, space, time, matter, energy, power, security, truth ?
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Mortal Embodied (AIXI) Agent
• Robot in human society: reward the robot according to how well it
solves the tasks we want it to do, like raising and safeguarding a
child. In the attempt to maximize reward, the robot will also
maintain itself.

• Robot w/o human interaction (e.g. on Alpha-Centauri):
Some rudimentary capabilities (which may not be that rudimentary
at all) are needed to allow the robot to at least survive.
Train the robot first in safe environment, then let it loose.

• Drugs (hacking the reward system):
No, since long-term reward would be small (death). but see [OR11]

• Replication/procreation: Yes, if AIXI believes that clones or
descendants are useful for its own goals (ensure retirement pension).

• Suicide: Yes (No), if AIXI expects negative (positive) life-time
reward. [MEH16]

• Self-Improvement: Yes, since this helps to increase reward.
• Manipulation: Any Super-intelligent robot can manipulate or
threaten its teacher to give more reward.



Discussion - 368 - Marcus Hutter

Some more Social Questions

• Attitude: Are pure reward maximizers egoists, psychopaths, and/or

killers or will they be friendly (altruism as extended ego(t)ism)?

• Curiosity killed the cat and maybe AIXI, [Sch07, Ors11]

or is extra reward for curiosity necessary? [LHS13, LH14]

• Immortality can cause laziness! [Hut05, Sec.5.7]

• Can self-preservation be learned or need (parts of) it be innate.

see also [RO11]

• Socializing: How will AIXI interact with another AIXI?

[Hut09d, Sec.5j],[PH06, LTF16]
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Creativity – An Algorithmic View
• Definition: the process of producing something original&worthwhile.

• The process: combining and modifying existing thoughts or artifacts
in novel ways, driven by random choice and filtering out bad results.

• Analogy: Ecosystems appear to be creatively designed,
but blind evolutionary process was sufficient.

• Solving complex problems requires (apparent) creativity.

• Since AIXI is able to solve complex problems, it will appear creative.

• Analogy: Brute-force MiniMax chess programs appear to make
(occasionally) creative moves.

• Creativity emerges from long-term reward maximization.

• Science ≈ finding patterns ≈ Compression
is creative process is formal procedure

• Exploratory actions can appear creative.

• Fazit: Creativity is just exploration, filtering, and problem solving.
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Is Intelligence Simple or Complex?

The AIXI model shows that

in theory intelligence is a simple concept

that can be condensed into a few formulas.

But intelligence may be complicated in practice:

• One likely needs to provide special-purpose algorithms (methods)

from the very beginning to reduce the computational burden.

• Many algorithms will be related to reduce the complexity

of the input/output by appropriate pre/postprocessing

(vision/language/robotics).



Discussion - 371 - Marcus Hutter

11.4 Outlook and Open Questions:

Contents

• Outlook

• Assumptions

• Multi-Agent Setup

• Next Steps
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Outlook

• Theory: Prove stronger theoretical performance guarantees for AIXI

and AIξ; general ones, as well as tighter ones for special

environments µ.

• Scaling AIXI down: Further investigation of the approximations

AIXItl, AIξ, MC-AIXI-CTW, ΦMDP, Gödel machine.

Develop other/better approximations of AIXI.

• Importance of training (sequence):

To maximize the information content in the reward,

one should provide a sequence of simple-to-complex tasks to solve,

with the simpler ones helping in learning the more complex ones,

and give positive reward to approximately the better half of the

actions.



Discussion - 373 - Marcus Hutter

Assumptions

• Occam’s razor is a central and profound assumption,

but actually a general prerequisite of science.

• Environment is sampled from a computable probability distribution

with a reasonable program size on a natural Turing machine.

• Objective probabilities/randomness exist

and respect Kolmogorov’s probability Axioms.

Assumption can be dropped if world is assumed to be deterministic.

• Using Bayes mixtures as subjective probabilities did not involve any

assumptions, since they were justified decision-theoretically.
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Assumptions (contd.)

• Maximizing expected lifetime reward sum:

Generalization possible but likely not needed.

(e.g. obtain risk aversion by concave trafo of rewards)

• Finite action/perception spaces Y/X : Likely generalizable to

countable spaces (ε-optimal policies), and possibly to continuous

ones. but finite is sufficient in practice.

• Nonnegative rewards:

Generalizable to bounded rewards. Should be sufficient in practice.

• Finite horizon or near-harmonic discounting.

Attention: All(?) other known approaches to AI

implicitly or explicitly make (many) more assumptions.
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Multi-Agent Setup – Problem

Consider AIXI in a multi-agent setup interacting with other agents,

in particular consider AIXI interacting with another AIXI.

There are no known theoretical guarantees for this case,

since AIXI-environment is non-computable.

AIXI may still perform well in general multi-agent setups,

but we don’t know.
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Next Steps

• Address the many open theoretical questions in [Hut05].

• Bridge the gap between (Universal) AI theory and AI practice.

• Explore what role logical reasoning, knowledge representation,

vision, language, etc. play in Universal AI.

• Determine the right discounting of future rewards.

• Develop the right nurturing environment for a learning agent.

• Consider embodied agents (e.g. internal↔external reward)

• Analyze AIXI in the multi-agent setting.
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11.5 Philosophical AI Questions:

Contents

• Can machines act or be intelligent or conscious?
(weak/strong AI, Gödel, mind-body, free will,
brain dissection, Chinese room, lookup table)

• Turing Test & Its Limitations

• (Non)Existence of Objective Probabilities

• Non-Computable Physics & Brains

• Evolution & the Number of Wisdom

• Ethics and Risks of AI

• What If We Do Succeed?

• Countdown To Singularity

• Three Laws of Robotics
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Can Weak AI Succeed?

The argument from disability:

– A machine can never do X.

+ These claims have been disproven for an increasing # of things X.

The mathematical objection (Lucas 1961, Penrose 1989,1994):

– No formal system incl. AIs, but only humans can “see” that Gödel’s

unprovable sentence is true.

+ Lucas cannot consistently assert that this sentence is true.

The argument from informality of behavior:

– Human behavior is far too complex to be captured by any simple set

of rules. Dreyfus (1972,1992) “What computers (still) can’t do”.

+ Computers already can generalize, can learn from experience, etc.
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The Mathematical Objection to Weak AI
Applying Gödel’s incompleteness theorem:

• G(F) := “This sentence cannot be proved in the formal axiomatic
system F”

• We humans can easily see that G(F) must be true.
• Lucas (1961), Penrose (1989,1994):
Since any AI is an F, no AI can prove G(F).

• Therefore there are things humans, but no AI system can do.

Counter-argument:

• L := “J.R.Lucas cannot consistently assert that this sentence is
true”

• Lucas cannot assert L, but now we can conclude that it is true.
• Lucas is in the same situation as an AI.
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Strong AI versus Weak AI

Argument from consciousness:

– A machine passing the Turing test would not prove that it actually

really thinks or is conscious about itself.

+ We do not know whether other humans are conscious about

themselves, but it is a polite convention, which should be applied to

AIs too.

Biological naturalism:

– Mental states can emerge from neural substrate only.

Functionalism:

+ Only the functionality/behavior matters.



Discussion - 381 - Marcus Hutter

Strong AI: Mind-Body and Free Will

Mind-body problem:

+ Materialist: There exists only the a mortal body.

– Dualist: There also exists an immortal soul.

Free will paradox:

– How can a purely physical mind, governed strictly by physical laws,

have free will?

+ By carefully reconstructing our naive notion of free will:

If it is impossible to predict and tell my next decision,

then I have effective free will.
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Strong AI: Brain Dissection

The “brain in a vat” experiment:

(no) real experience:

+ [see movie Matrix for details]

The brain prosthesis experiment:

+ Replacing some neurons in the brain by functionally identical

electronic prostheses would neither effect external behavior nor

internal experience of the subject.

+ Successively replace one neuron after the other until the whole brain

is electronic.
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Strong AI: Chinese Room & Lookup Table
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Strong AI: Chinese Room & Lookup Table

Assume you have a huge table or rule book containing all answers to all

potential questions in the Turing test (say in Chinese which you don’t

understand).

– You would pass the Turing test without understanding anything.

+ There is no big enough table.

+ The used rule book is conscious.

+ Analogy: Look, the brain just works according to physical rules

without understanding anything.
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Strong AI versus Weak AI: Does it Matter?

The phenomenon of consciousness is mysterious, but likely it is not too

important whether a machine simulates intelligence or really is self aware.

Maybe the whole distinction between strong and weak AI makes no sense.

Analogy:

– Natural ↔ artificial: urea, wine, paintings, thinking.

– Real ↔ virtual: flying an airplane versus simulator.

Is there a fundamental difference? Should we care?
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Turing Test & Its Limitations

Turing Test (1950): If a human judge cannot reliably tell whether a

teletype chat is with a machine or a human, the machine should be

regarded as intelligent.

Standard objections:

• Tests for humanness, not for intelligence:

– Some human behavior is unintelligent.

– Some intelligent behavior is inhuman.

• The test is binary rather than graded.

Real problem: Unlike the Universal Intelligence Measure [LH07] and

AIXI, the Turing test involves a human interrogator and, hence, cannot

be formalized mathematically, therefore it does also not allow the

development of a computational theory of intelligence.
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(Non)Existence of Objective Probabilities

• The assumption that an event occurs with some objective

probability expresses the opinion that the occurrence of an

individual stochastic event has no explanation.

⇒ i.e. the event is inherently impossible to predict for sure.

• One central goal of science is to explain things.

• Often we do not have an explanation (yet) that is acceptable,

• but to say that “something can principally not be explained”

means to stop even trying to find an explanation.

⇒ It seems safer, more honest, and more scientific to say that with our

current technology and understanding we can only determine

(subjective) outcome probabilities.
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Objective=InterSubjective Probability

• If a sufficiently large community of people arrive at the same

subjective probabilities from their prior knowledge,

one may want to call these probabilities objective.

• Example 1: The outcome of tossing a coin is usually agreed upon to

be random, but may after all be predicted by taking a close enough

look.

• Eaxmple 2: Even quantum events may be only pseudo-random

(Schmidhuber 2002).

• Conclusion: All probabilities are more or less subjective.

Objective probabilities may actually only be inter-subjective.
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Non-Computable Physics & Brains

Non-computable physics (which is not too odd)

could make Turing-computable AI impossible.

At least the world that is relevant for humans seems to be computable,

so non-computable physics can likely be ignored in practice.

(Gödel argument by Penrose&Lucas has loopholes).

Evolution & the Number of Wisdom

The enormous computational power of evolution could have developed

and coded information into our genes,

(a) which significantly guides human reasoning,

(b) cannot efficiently be obtained from scratch (Chaitin 1991).

Cheating solution: Add the information from our genes or brain

structure to any/our AI system.
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Ethics and Risks of AI
– People might lose their jobs to automation.
+ So far automation (via AI technology) has created more jobs and

wealth than it has eliminated.

– People might have too much (or too little) leisure time
+ AI frees us from boring routine jobs and leaves more time for

pretentious and creative things.

– People might lose their sense of being unique.
+ We mastered similar degradations in the past

(Galileo, Darwin, physical strength)
+ We will not feel so lonely anymore (cf. SETI)

– People might lose some of their privacy rights.

– The use of AI systems might result in a loss of accountability.
? Who is responsible if a physician follows the advice of a medical
expert system, whose diagnosis turns out to be wrong?
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What If We Do Succeed?
The success of AI might mean the end of the human race.

• Natural selection is replaced by artificial evolution.
AI systems will be our mind children (Moravec 1988,2000)

• Once a machine surpasses the intelligence of a human it can design
even smarter machines (I.J.Good 1965).

• This will lead to an intelligence explosion and a technological
singularity at which the human era ends.

• Prediction beyond this event horizon will be impossible
(Vernor Vinge 1993)

• Alternative 1: We keep the machines under control.

• Alternative 2: Humans merge with or extend their brain by AI.
Transhumanism (Ray Kurzweil 2005)
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Countdown To Singularity
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Three Laws of Robotics

Robots (should) have rights and moral duties

1. A robot may not injure a human being, or, through

inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human

beings except where such orders would conflict

with the First Law.

3. A robot must protect its own existence as long as such protection

does not conflict with the First or Second Law.

(Isaac Asimov 1942)
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Conclusions

• We have developed a parameterless model of AI based on Decision

Theory and Algorithm Information Theory.

• We have reduced the AI problem to pure computational questions.

• A formal theory of something, even if not computable, is often a

great step toward solving a problem and also has merits in its own.

• All other systems seem to make more assumptions about the

environment, or it is far from clear that they are optimal.

• Computational questions are very important and are probably

difficult. This is the point where AI could get complicated as many

AI researchers believe.

• Elegant theory rich in consequences and implications.
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Thanks! Questions? Details:

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Open research problems:

at www.hutter1.net/ai/uaibook.htm

Compression contest:

with 50’000C= prize at prize.hutter1.net

Projects: www.hutter1.net/official/projects.htm


