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The Agent Model
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Rational Agents in Deterministic Environments

- p: X*—Y* is deterministic policy of the agent,
p(a:<k) =Y1.. With 2 =x1...700_1.
- q: V" — X* is deterministic environment,

Q(ylzk) — L1:k with Y1k = Y1..- Yk -

— . /
Input xy, =2 7 consists of a regular part x,
and reward 7 € [0..7,02 ]

- Value V2 i=rp + ... 4+ 1,

optimal policy p*®*! := arg max, V}'?,

Lifespan or initial horizon m.
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Agents in Probabilistic Environments

Given history 1.2 -1, the probability that the environment leads to

perception x in cycle k is (by definition) o(zg|y1.px<k).

Abbreviation (Bayes rule)

U(xlzm‘ylzm) — U(x1]y1)~a(:1:2\y1;23:1)- 'U(xm‘ylzmx<m)

The average value of policy p with horizon m in environment o given

history y-rx - is defined as

L1:m

The goal of the agent should be to maximize the value.
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Optimal Policy and Value
The o-optimal policy p? := argmax, V. maximizes VP < V* := VP
Explicit expressions for the action ¥ in cycle k of the o-optimal policy
p? and their value V’ are

— arg max max ... max Tkt oo T7m ) O(Thom |Y1:m L :
Yk gyk ; Z o ;(k )0 (Thm |Y1:mT<k)

Yk+1
Lk41

V¥ = Lmax max ... max 1+ o. +7m ) O(T1:m |Y1:m )-
’ myleQZ ym;(l )(1‘?/1)

I1 X2

Keyword: Expectimax tree/algorithm.
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Expectimax Tree/Algorithm

Vi (yw<r) =max V. (Yr<ryr)
Yk

action yx with max value.

Vi (w<ryr) = g 7 + V. (yw1.6)]o(zk | @<k yr)
g,

o expected reward r; and observation z7 .

Va* (?ﬂ?l:k) = max Vg* (yflzkyk;+1)
Y41



Marcus Hutter - 8 - Universal Artificial Intelligence

Known environment u

e Assumption: p Is the true environment in which the agent operates

e Then, policy p* is optimal in the sense that no other policy for an

agent leads to higher p-expected reward.

e Special choices of u: deterministic environments, Markov decision

processes (MDPs), adversarial environments.

e [here is no principle problem in computing the optimal action y; as

long as 1 is known and computable and X', YV and m are finite.

e Things drastically change if 1 is unknown ...
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The Bayes-mixture distribution ¢

Assumption: The true environment g is unknown.

Bayesian approach: The true probability distribution 1 is not learned
directly, but is replaced by a Bayes-mixture &.

Assumption: We know that the true environment 1 is contained in some
known (finite or countable) set M of environments.

The Bayes-mixture £ is defined as
g(wlzm‘yl:m) ‘= Z wuy(xlzm’yl:m) with Z w, =1, w, >0 Yv
veM veM

The weights w, may be interpreted as the prior degree of belief that the

true environment iIs v.

Then &(21.9m|y1.m ) could be interpreted as the prior subjective belief
probability in observing x1.,,, given actions ¥1.,,.
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Questions of Interest

e It is natural to follow the policy p* which maximizes Vgp.

e If 11 is the true environment the expected reward when following

policy p¢ will be V*.

e The optimal (but infeasible) policy p* yields reward Vlf“ =V

.. . . 3
o Are there policies with uniformly larger value than V"7

. ¢
e How close is V/f to V;?

e What is the most general class M and weights w,,.
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A universal choice of ¢ and M
e \We have to assume the existence of some structure on the
environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

e \We can only unravel effective structures which are describable by
(semi)computable probability distributions.

e So we may include all (semi)computable (semi)distributions in M.

e Occam’s razor tells us to assign high prior belief to simple
environments.

e Using Kolmogorov's universal complexity measure K (v) for
environments v one should set w, ~ 275®) where K(v) is the
length of the shortest program on a universal TM computing v.

e The resulting AIXI model [Hutter:00] is a unification of (Bellman's)
sequential decision and Solomonoff’'s universal induction theory.

e In the following we consider generic M and w,.



Linearity and Convexity of V, in o
VP is a linear functionino: V=5 w,V}
V. is a convex function in o VS <) w, V)

o)

where f(ﬂfl;m‘yl;m) — Zz/ Wy V(xlzm‘ylzm)-

These are the crucial properties of the value function V.

Loose interpretation: A mixture can never increase performance.

Pareto-Optimality of p¢

Policy p¢ is Pareto-optimal in the sense that there is no other policy p
. € . . .
with VP > VP for all v € M and strict inequality for at least one v.

Extension: Balanced Pareto optimality.



Self-optimizing Policies

Under which circumstances does the value of the universal policy p¢
converge to optimum?

vt V> for horizon m — oo forall ve M. (1)

74

The least we must demand from M to have a chance that (1) is true is

that there exists some policy p at all with this property, i.e.

3p: VP — V* for horizon m — oo forall ve M. (2)

Main result: (2) = (1): The necessary condition of the existence of a

self-optimizing policy p is also sufficient for p¢ to be self-optimizing.
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Environments with Self-Optimizing Policies
e Ergodic MDPs,
e ['" order ergodic MDPs,
e Certain classes of POMDPs,
e (Classification tasks,
e i.i.d. processes,
e Bandit problems,
e Factorizable environments,
e Repeated games,

e Prediction problems,

o 7 ... 7
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Discussion of Self-optimizing Property

e The beauty of this theorem is that the necessary condition of
convergence is also sufficient.

e [he unattractive point is that this is not an asymptotic convergence
statement of a single policy p* for time k — oo for some fixed m.

e Shift focus from the total value V' and horizon m — oo to the
future value (value-to-go) V' and current time k — oo.

Future Value and Discounting

e Eliminate the horizon by discounting the rewards ri ~ yirg with

[y :=> ", v < oo and letting m — oo.
1

® Vkp,yo- = F_ 77}i—r>noo Z ('Ykrk‘i_"I"Ymrm)a_(kawlm$<k)|y1m=p(5€<m)

Lk:m

e Further advantage: Traps (non-ergodic environments) do not
necessarily prevent self-optimizing policies any more.
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Results for Discounted Future Value

PO e T pE _ v\ PV
o Vi is linear ino: V> =)  wpV. .

*O

- - . *§ v Y/ kU
ny is convexino: V> <) wy .

k~y

v o.__ V(T<k|Y<k) : af 1
e where wy 1= w, Tl 1S the posterior belief in v.

e p° is Pareto-optimal in the sense that there is no other policy p with

5 . 0 0
Vi > V2" for all v € M and strict inequality for at least one v

e If there exists a self-optimizing policy for M, then p¢ is
self-optimizing in the sense that
3

~ b k— o0 k— o0
. PrV * U P U * LU
It 3ppvv - V2w — Vi = VU — Vo
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Importance of the Right Discounting

Standard geometric discounting: v, = v* with 0 < v < 1.

Problem: Most environments do not possess self-optimizing policies
under this discounting.

Reason: Effective horizon A/ is finite (~ ln% for v, = 7).

The analogue of m — oo is k — oo and hsz — oo for k — oo.

Result: Policy p* is self-optimizing for the class of (I order) ergodic
MDPs if 7@:1 > 1.

Example discounting: v = k=2 or v, =k 17 or ~, = 27K,

Horizon is of the order of the age of the agent: hsz ~ k.
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Outlook

e Continuous classes M.
e Restricted policy classes.
e Non-asymptotic bounds.

e Tighter bounds by exploiting extra properties of the environments,

like the mixing rate of MDPs.
e Search for other performance criteria [Hutter:00].

e Instead of convergence of the expected reward sum, study
convergence with high probability of the actually realized reward

sum.
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Conclusions

e Setup: Agents acting in general probabilistic environments with
reinforcement feedback.

e Assumptions: True environment u belongs to a known class of
environments M, but is otherwise unknown.

e Results: The Bayes-optimal policy p¢ based on the Bayes-mixture
=) ,em W is Pareto-optimal and self-optimizing if M admits
self-optimizing policies.

e Application: The class of ergodic MDPs admits self-optimizing
policies.

e New: Policy p® with unbounded effective horizon is the first purely
Bayesian self-optimizing consistent policy for ergodic MDPs.

e Learn: The combined conditions 'y < oo and ’yf“y:l > 1 allow a
consistent self-optimizing Bayes-optimal policy based on mixtures.



