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The Agent Model
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Rational Agents in Deterministic Environments

- p :X ∗→Y∗ is deterministic policy of the agent,

p(x<k) = y1:k with x<k ≡ x1...xk−1.

- q :Y∗→X ∗ is deterministic environment,

q(y1:k) = x1:k with y1:k ≡ y1...yk.

- Input xk≡x′krk consists of a regular part x′k
and reward rk ∈ [0..rmax].

- Value V pq
km := rk + ... + rm,

optimal policy pbest := arg maxp V pq
1m,

Lifespan or initial horizon m.
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Agents in Probabilistic Environments

Given history y1:kx<k, the probability that the environment leads to

perception xk in cycle k is (by definition) σ(xk|y1:kx<k).

Abbreviation (Bayes rule)

σ(x1:m|y1:m) = σ(x1|y1)·σ(x2|y1:2x1)· ... ·σ(xm|y1:mx<m)

The average value of policy p with horizon m in environment σ given

history y<kx<k is defined as

V p
σ := 1

m

∑
x1:m

(r1+ ... +rm)σ(x1:m|y1:m)|y1:m=p(x<m)

The goal of the agent should be to maximize the value.



Marcus Hutter - 6 - Universal Artificial Intelligence

Optimal Policy and Value

The σ-optimal policy pσ := arg maxp V p
σ maximizes V p

σ ≤ V ∗
σ := V pσ

σ .

Explicit expressions for the action yk in cycle k of the σ-optimal policy

pσ and their value V ∗
σ are

yk = arg max
yk

∑
xk

max
yk+1

∑
xk+1

... max
ym

∑
xm

(rk+ ...+rm)·σ(xk:m|y1:mx<k),

V ∗
σ = 1

m max
y1

∑
x1

max
y2

∑
x2

... max
ym

∑
xm

(r1+ ... +rm)·σ(x1:m|y1:m).

Keyword: Expectimax tree/algorithm.
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Expectimax Tree/Algorithm
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Known environment µ

• Assumption: µ is the true environment in which the agent operates

• Then, policy pµ is optimal in the sense that no other policy for an

agent leads to higher µ-expected reward.

• Special choices of µ: deterministic environments, Markov decision

processes (mdps), adversarial environments.

• There is no principle problem in computing the optimal action yk as

long as µ is known and computable and X , Y and m are finite.

• Things drastically change if µ is unknown ...
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The Bayes-mixture distribution ξ
Assumption: The true environment µ is unknown.

Bayesian approach: The true probability distribution µ is not learned

directly, but is replaced by a Bayes-mixture ξ.

Assumption: We know that the true environment µ is contained in some

known (finite or countable) set M of environments.

The Bayes-mixture ξ is defined as

ξ(x1:m|y1:m) :=
∑

ν∈M
wνν(x1:m|y1:m) with

∑

ν∈M
wν = 1, wν > 0 ∀ν

The weights wν may be interpreted as the prior degree of belief that the

true environment is ν.

Then ξ(x1:m|y1:m) could be interpreted as the prior subjective belief

probability in observing x1:m, given actions y1:m.
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Questions of Interest

• It is natural to follow the policy pξ which maximizes V p
ξ .

• If µ is the true environment the expected reward when following

policy pξ will be V pξ

µ .

• The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡ V ∗
µ .

• Are there policies with uniformly larger value than V pξ

µ ?

• How close is V pξ

µ to V ∗
µ ?

• What is the most general class M and weights wν .
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A universal choice of ξ and M
• We have to assume the existence of some structure on the

environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

• We can only unravel effective structures which are describable by

(semi)computable probability distributions.

• So we may include all (semi)computable (semi)distributions in M.

• Occam’s razor tells us to assign high prior belief to simple

environments.

• Using Kolmogorov’s universal complexity measure K(ν) for

environments ν one should set wν ∼ 2−K(ν), where K(ν) is the

length of the shortest program on a universal TM computing ν.

• The resulting AIXI model [Hutter:00] is a unification of (Bellman’s)

sequential decision and Solomonoff’s universal induction theory.

• In the following we consider generic M and wν .
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Linearity and Convexity of Vσ in σ

V p
σ is a linear function in σ: V p

ξ =
∑

ν wνV p
ν

V ∗
σ is a convex function in σ: V ∗

ξ ≤ ∑
ν wνV ∗

ν

where ξ(x1:m|y1:m) =
∑

ν wν ν(x1:m|y1:m).

These are the crucial properties of the value function Vσ.

Loose interpretation: A mixture can never increase performance.

Pareto-Optimality of pξ

Policy pξ is Pareto-optimal in the sense that there is no other policy p

with V p
ν ≥ V pξ

ν for all ν ∈M and strict inequality for at least one ν.

Extension: Balanced Pareto optimality.



Marcus Hutter - 13 - Universal Artificial Intelligence

Self-optimizing Policies

Under which circumstances does the value of the universal policy pξ

converge to optimum?

V pξ

ν → V ∗
ν for horizon m →∞ for all ν ∈M. (1)

The least we must demand from M to have a chance that (1) is true is

that there exists some policy p̃ at all with this property, i.e.

∃p̃ : V p̃
ν → V ∗

ν for horizon m →∞ for all ν ∈M. (2)

Main result: (2) ⇒ (1): The necessary condition of the existence of a

self-optimizing policy p̃ is also sufficient for pξ to be self-optimizing.
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Environments with Self-Optimizing Policies

• Ergodic mdps,

• lth order ergodic mdps,

• Certain classes of pomdps,

• Classification tasks,

• i.i.d. processes,

• Bandit problems,

• Factorizable environments,

• Repeated games,

• Prediction problems,

• ? ... ?
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Discussion of Self-optimizing Property
• The beauty of this theorem is that the necessary condition of

convergence is also sufficient.

• The unattractive point is that this is not an asymptotic convergence

statement of a single policy pξ for time k →∞ for some fixed m.

• Shift focus from the total value V and horizon m →∞ to the

future value (value-to-go) V and current time k →∞.

Future Value and Discounting

• Eliminate the horizon by discounting the rewards rk ; γkrk with

Γk :=
∑∞

i=k γi < ∞ and letting m →∞.

• V pσ
kγ :=

1
Γk

lim
m→∞

∑
xk:m

(γkrk+...+γmrm)σ(xk:m|y1:mx<k)|y1:m=p(x<m)

• Further advantage: Traps (non-ergodic environments) do not

necessarily prevent self-optimizing policies any more.
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Results for Discounted Future Value

• V pσ
kγ is linear in σ: V pξ

kγ =
∑

ν wν
k V pν

kγ .

• V ∗σ
kγ is convex in σ: V ∗ξ

kγ ≤
∑

ν wν
k V ∗ν

kγ .

• where wν
k := wν

ν(x<k|y<k)
ξ(x<k|y<k) is the posterior belief in ν.

• pξ is Pareto-optimal in the sense that there is no other policy p with

V pν
kγ ≥ V pξν

kγ for all ν ∈M and strict inequality for at least one ν.

• If there exists a self-optimizing policy for M, then pξ is

self-optimizing in the sense that

If ∃p̃k∀ν : V p̃kν
kγ

k→∞−→ V ∗ν
kγ =⇒ V pξµ

kγ
k→∞−→ V ∗µ

kγ .
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Importance of the Right Discounting

Standard geometric discounting: γk = γk with 0 < γ < 1.

Problem: Most environments do not possess self-optimizing policies

under this discounting.

Reason: Effective horizon heff
k is finite (∼ ln 1

γ for γk = γk).

The analogue of m →∞ is k →∞ and heff
k →∞ for k →∞.

Result: Policy pξ is self-optimizing for the class of (lth order) ergodic

mdps if γk+1
γk

→ 1.

Example discounting: γk = k−2 or γk = k−1−ε or γk = 2−K(k).

Horizon is of the order of the age of the agent: heff
k ∼ k.
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Outlook

• Continuous classes M.

• Restricted policy classes.

• Non-asymptotic bounds.

• Tighter bounds by exploiting extra properties of the environments,

like the mixing rate of mdps.

• Search for other performance criteria [Hutter:00].

• Instead of convergence of the expected reward sum, study

convergence with high probability of the actually realized reward

sum.
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Conclusions
• Setup: Agents acting in general probabilistic environments with

reinforcement feedback.

• Assumptions: True environment µ belongs to a known class of

environments M, but is otherwise unknown.

• Results: The Bayes-optimal policy pξ based on the Bayes-mixture

ξ =
∑

ν∈M wνν is Pareto-optimal and self-optimizing if M admits

self-optimizing policies.

• Application: The class of ergodic mdps admits self-optimizing

policies.

• New: Policy pξ with unbounded effective horizon is the first purely

Bayesian self-optimizing consistent policy for ergodic mdps.

• Learn: The combined conditions Γk < ∞ and γk+1
γk

→ 1 allow a

consistent self-optimizing Bayes-optimal policy based on mixtures.


