previous  home  search  LaTeX (17kb)   PostScript (87kb)   PDF (91kb)   Html/Gif   contact    up    next  

Universal Sequential Decisions in Unknown Environments


Author: Marcus Hutter (2001)
Comments: 2 LaTeX two-column pages
Subj-class: Artificial Intelligence; Learning;

ACM-class:  

I.2; I.2.6; I.2.8; F.1.3; F.2
Reference: Proceedings of the 5th European Workshop on Reinforcement Learning (EWRL-5) 25-26, Onderwijsinsituut CKI, (picture gallery)
Remark: This is a 2 page summary of 60 page technical report
Paper: LaTeX (17kb)  -  PostScript (87kb)  -  PDF (91kb)  -  Html/Gif
Slides: PostScript - PDF

Keywords: Artificial intelligence, Rational agents, sequential decision theory, universal Solomonoff induction, algorithmic probability, reinforcement learning, computational complexity, Kolmogorov complexity.

Abstract: We give a brief introduction to the AIXI model, which unifies and overcomes the limitations of sequential decision theory and universal Solomonoff induction. While the former theory is suited for active agents in known environments, the latter is suited for passive prediction of unknown environments.

 previous  home  search  LaTeX (17kb)   PostScript (87kb)   PDF (91kb)   Html/Gif   contact    up    next  

Table of Contents

 previous  home  search  LaTeX (17kb)   PostScript (87kb)   PDF (91kb)   Html/Gif   contact    up    next  

BibTeX Entry

@Article{Hutter:01decision,
  author =       "Marcus Hutter",
  title =        "Universal Sequential Decisions in Unknown Environments",
  year =         "2001",
  pages =        "25--26",
  address =      "Manno(Lugano), CH",
  journal =      "Proceedings of the 5th European Workshop on Reinforcement Learning (EWRL-5)",
  number =       "27",
  editor =       "Marco A. Wiering",
  publisher =    "Onderwijsinsituut CKI - Utrecht University",
  series =       "Cognitieve Kunstmatige Intelligentie",
  ISBN =         "90-393-2874-9",
  ISSN =         "1389-5184",
  keywords =     "Artificial intelligence, Rational agents,
                  sequential decision theory, universal Solomonoff induction,
                  algorithmic probability, reinforcement learning, computational
                  complexity, Kolmogorov complexity.",
  url =          "http://www.hutter1.net/ai/pdecision.htm",
  categories =   "I.2.   [Artificial Intelligence],
                  I.2.6. [Learning],
                  I.2.8. [Problem Solving, Control Methods and Search],
                  F.1.3. [Complexity Classes],
                  F.2.   [Analysis of Algorithms and Problem Complexity]",
  abstract =     "We give a brief introduction to the AIXI model, which unifies and
                  overcomes the limitations of sequential decision theory and
                  universal Solomonoff induction. While the former theory is suited
                  for active agents in known environments, the latter is suited for
                  passive prediction of unknown environments.",
}
      
 previous  home  search  LaTeX (17kb)   PostScript (87kb)   PDF (91kb)   Html/Gif   contact    up    next