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Abstract

We derive a very general regret bound in the framework of prediction with
expert advice, which challenges the best known regret bound for Bayesian se-
quence prediction. Both bounds of the form

√
Loss×complexity hold for any

bounded loss-function, any prediction and observation spaces, arbitrary ex-
pert/environment classes and weights, and unknown sequence length.

Sequential/online predictions. In sequential or online prediction, for t=1,2,3,..., a
predictor p makes a prediction yp

t ∈Y based on past observations x1,...,xt−1; thereafter
xt ∈X is observed and p suffers loss `(xt,y

p
t ). The goal is to design predictors with

small total loss Lp
n :=

∑n
t=1`(xt,y

p
t ). Applications are abundant, e.g. weather or stock

market forecasting.

Bayesian Sequence Prediction. In the Bayesian approach to sequence prediction,
the definition of the Bayes-optimal mixture predictor is straight-forward. The Bayesian
framework assumes that the sequence x1...xn is sampled from some distribution µ, i.e.
the probability of x<t := x1...xt−1 is µ(x<t) and the probability of the next symbol
being xt, given x<t, is µ(xt|x<t). The µ-expected loss (given x<t) when some predictor
Λ predicts the tth symbol and the total µ-expected loss in the first n predictions are

l̄Λt (x<t) :=
∑
xt

µ(xt|x<t)`(xt, y
Λ
t ), L̄Λ

n :=
n∑

t=1

∑
x<t

µ(x<t)· l̄Λt (x<t).

The goal is to minimize the µ-expected loss. More generally, we define the Λρ sequence
prediction scheme

y
Λρ

t := arg min
yt∈Y

∑
xt

ρ(xt|x<t)`(xt, yt),
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which minimizes the ρ-expected loss. If µ is known, Λµ is obviously the best prediction

scheme in the sense of achieving minimal expected loss (l̄
Λµ

t ≤ l̄Λt for all Λ). Typically µ
is unknown, but known to belong to a class of distributions M. For countable M the
Bayesian solution is to consider the mixture distribution ξ(x) :=

∑
ν∈Mexp(−kν)ν(x)

with
∑

ν∈Mexp(−kν) = 1, where exp(−kν) may be interpreted as the prior belief in
ν. For finite M, the uniform choice kν = ln|E| ∀ν ∈M is common. Under certain

conditions, the loss L̄
Λξ
n is bounded by the loss L̄Λ

n of any other predictor Λ (and hence
by the loss of the best predictor in hindsight Λµ) in the following way:

L̄Λξ
n ≤ L̄Λ

n + 2
√

L̄Λ
n ·kµ + 2·kµ ∀µ ∈M ∀Λ (1)

Note that L̄Λ
n depends on µ. For countable M and X , finite Y , any kµ, and any

bounded loss function ` :X×Y→ [0,1], bound (1) has been proven in [Hut03].

Prediction with Expert Advice (PEA). Contrary to the straight-forward definition
of Bayes-optimal predictors, designing well-performing PEA-master algorithms is an
art. In the PEA framework one considers a countable class of predictors E={e1,e2,...},
called experts. Typically no assumptions are made on (the process generating) the
observation sequence x1...xn. The price for this generality is that there are no absolute
performance assertions, but there are strong relative guarantees: Consider the expert
ε := argmine∈EL

e
n, which performs best on sequence x1...xn. Prediction scheme ε is

infeasible, since Lε
n depends on x1...xn, not known in advance. But we can ask how

close we can come to Lε
n with a master algorithm M which dynamically chooses among

or combines the experts e∈ E at time t based only on the known past performance
Le

t−1. The naive idea of selecting the expert e which worked best in the past (i.e.
yM

t =argmine∈EL
e
t−1) can fail due to oscillations, but refinements selecting expert e with

high/low probability we
t if Le

t−1 is small/large work. For infinite classes of experts it is
also necessary to add a penalty ke to the loss of each expert e with

∑
e∈Eexp(−ke)=1.

For finite E , the uniform choice ke = ln|E| ∀e is common. The “Weighted Majority”
(WM) algorithm predicts ye

t with probability we
t ∝ exp(−ηtL

e
t−1−ke) with suitable

learning parameter ηt↘ 0 [LW89, Vov90, CB97, ACBG02, YEYS04]. The recently
revived “Follow the Perturbed Leader” (FPL) algorithm selects expert e of minimal
ηtL

e
t−1+ke+Qe

t for prediction, where Qe
t is a random perturbation, i.e. we

t =P [ηtL
e
t−1+

ke+Qe
t≤ηtL

e′
t−1+ke′

+Qe′
t ∀e′] [Han57, KV03, HP04]. We are interested in the expected

loss LM
n :=E[LM

n ] of M relative to Lε
n :=E[Lε

n] of the best expert in hindsight. If the set
Y is convex, the master algorithm may, instead of a randomized prediction, make the
deterministic prediction ym

t :=
∑

e∈Ew
e
t y

e
t ∈Y . For convex (in y) loss-functions `(x,y)

an expected bound on LM
n implies a for-sure bound on Lm

n , since Lm
n ≤ LM

n . There
are many static bounds (ηt = const.) if n or Ln is known in advance. We only review
adaptive bounds which do not require such extra knowledge. Under certain conditions,
the following bound can be proven:

Lm
n ≤ LM

n ≤ Le
n + a·

√
Le

n ·ke + b·ke ∀e ∈ E ∀x1...xn, (2)
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where a and b are small positive constants. For finite E , ke =ln|E|, X =Y=[0,1], and
`(x,y)= |x−y|, the bound (2) on Lm

n for WM-type masters has been proven in [CB97]
with a = 2.8 and b = 4 via a doubling trick, and in [ACBG02, YEYS04] for smooth
ηt→0 with better constants. We have shown that all four assumptions can be relaxed
for FPL-type masters: A bound (2) on LM

n (and hence Lm
n for convex Y and `) for any

X and Y and any bounded loss function ` :X×Y→ [0,1] has been derived. For finite E
and ke =ln|E|, the constants are a=2

√
2 and b=8. A hierarchy of experts allowed to

generalize this result to infinite E and arbitrary ke with constant a arbitrarily close to
2
√

2. The interested reader can find the derivation in the Technical Report [HP04].

PEA versus Bayes. The formal similarity and duality between Bayes bound (1)
and PEA bound (2) is striking. Whereas randomized PEA M performs well in any
environment, but only relative to a given set of experts E , deterministic Bayes Λξ

competes with any other predictor Λ, but only in a given set of probabilistic environ-
ments M. M depends on the set of experts E , Λξ depends on the set of environments
M. Expectations in PEA-bounds are over the randomized Master algorithm, while
Expectations in Bayes-bounds are over environmental sequences. Apart from these
formal relations, there is a real connection between both bounds. The class of Bayes-
predictors {Λν : ν ∈M} may be regarded as a class of experts E . The corresponding

master algorithm M then satisfies bound (2), i.e. LM
n ≤LΛν

n +a
√

LΛν
n kν +bkν . Setting

ν =µ, taking the µ-expectation, using Jensen’s inequality and E[LΛµ
n ]≡ L̄Λµ

n ≤ L̄Λ
n ∀Λ,

we get:

L̄
M
n ≡ E[L̄M

n ] ≤ L̄Λ
n + a·

√
LΛ

n ·kµ + b·kµ ∀µ ∈M ∀Λ (3)

So ignoring the conditions under which the bounds can be applied and the magnitude
of the constants a and b, in the Bayesian framework instead of using the Bayes-optimal
predictor Λξ, one may use the PEA master algorithm M with same/similar performance
guarantees.

Discussion. Our bound (3) represents a real challenge to Bayesian sequence predic-
tion. Ignoring the constants a and b, the PEA master M has the same performance
bound as the Bayes predictor Λξ (2)⇒(3)=̂(1). Additionally, PEA has worst-case guar-
antees, which Bayes lacks. So it seems that PEA is superior to Bayes. The following
issues are of interest to corroborate or to attenuate this statement. First, we only com-
pared bounds on PEA and Bayes. It would be interesting to know something about
the actual (practical or theoretical) relative performance of M and Λξ. For instance
the regrets are much better (finite) for smooth loss functions. Second, consider general
X , Y , `∈ [0,1], and finite E with ke = ln|E|. What is the optimal (minimal possible)
constant a in bound (2)? In the static case a =

√
2 is optimal [Vov95] and achieved

by the Hedge algorithm [FS97]. Moving from static to dynamic ηt typically costs an
extra factor

√
2. Also, a=2 in the Bayes bound (1). So we conjecture that there exists

a PEA-type master (possibly Hedge) with a=2, and this is the best achievable. Can
a = 2

√
2 of FPL be improved? A necessary or at least helpful subproblem is to first

generalize the existing bounds for WM-type masters to general X , Y , E , and `∈ [0,1],
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similarly to FPL. The Hedge algorithm is promising, since such static bounds already
exist. Finally, can the PEA bound (2) be generalized to infinite E and general ke in
a clean way without the hierarchy trick used in [HP04]? Again, looking at the Bayes
bound which works without a hierarchy trick, suggests a positive answer. Is it neces-
sary to use an expert dependent ηe

t ? Weaker bounds with
√

Ln in (2) and (1) replaced
by

√
n are typically easier to prove [KV03], and hence the above questions may be

approached by first answering them for
√

n.
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